Review on Perimidines: A synthetic Pathways Approach

GANESH B. YELMAME* and SHRIKANT B. JAGTAP

1Department of Chemistry, Mahatma Gandhi Vidyamandir’s SPH Arts, Science and Commerce College, Nampur, Nashik-423 204, India (Affiliated to Savitribai Phule Pune University, Pune)
2Research Centre in Chemistry, Pune District Education Association’s Annasaheb Magar Mahavidyalaya, Hadapsar, Pune- 411028, India (Affiliated to Savitribai Phule Pune University, Pune)

Abstract
Perimidines are available in an assortment of drugs and general use industrial structures and perimidines are also significant primary theme because of their extraordinary method of physiological activity. Thus the underlying significance of perimidine moiety has evoked a lot of interest in the field of natural blend and compound science to build up some better than ever amalgamation of this atomic skeleton. In this review, we have depicted a modern outline on the new advances in the different manufactured approaches of perimidine. The review covers the essential applied and down to earth synergist blend like, green methodologies, metal catalysed responses, microwave illumination, grinding and so forth which are critical for developing perimidine skeleton. This review will fulfill the assumptions for perusres who are keen on the advancement of the field and searching for an update. It will animate analysts to grow new and innovative manufactured admittance to this heterocyclic framework, which will be instrumental in the headway of perimidine science. This review provides an overview of various synthetic methodologies for the synthesis of a wide range of perimidine derivatives with applications in material chemistry, drug discovery, polymer chemistry, photo sensors, dye chemistry, and other fields.

Introduction
Perimidine is synthesized by inserting a one-carbon unit between the nitrogen and closing the ring of 1,8-naphthalenediamine. Heteroaromatic structure displaying the distinct properties of compounds with abundance and deficit of electrons at the same time. Perimidine is one such framework, and its amphotropic chemical properties make it a fascinating research topic. Perimidine derivatives are explored in terms of polymer chemistry, drug discovery, photo sensors, dye industries, and catalytic action in organic synthesis.1 Perimidines and the pyrimidine fused with naptha framework is a relatively recent and rapidly expanding field of pure and applied chemistry.

CONTACT Ganesh B. Yelmame yelmameganesh@gmail.com Department of Chemistry, Mahatma Gandhi Vidyamandir’s SPH Arts, Science and Commerce College, Nampur, Nashik-423 204, India (Affiliated to SP Pune University, Pune)

© 2021 The Author(s). Published by Enviro Research Publishers.
This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY).
Doi: http://dx.doi.org/10.13005/msri/180103
Structure, synthesis, spectral experiments, bonding with numerous motifs and ligands, and their varied reactivity in a variety of fields. Researchers are particularly interested in its environmentally friendly synthesis because of its unusual electronic properties and wide range of applications. Green Chemistry has emerged as a new branch of chemistry for the synthesis of a variety of compounds by employing green chemistry principles. Various correspondences have been focussed in recent years to the biological activity of perimidines. Heterocyclic compounds were investigated to show wide variety of biological properties. As a result of this concern, numerous perimidine and composite synthesis methodologies have been established. A significant number of perimidines have been designed under various conditions to date. Writing reports uncover that perimidines are of wide intrigue in view of their expansive range of biological activities. Perimidines exhibit antihelminthic activity. Neurotropic active systems (stimulants and depressants of the central nervous system have been found out by using perimidines. Some compounds reveal good antitumor antagonist, antibacterial and antifungal activities. Some perimidine derivatives have been proposed as highly effective antiulcer agent. Some perimidine derivatives acts as antineoplastic agents. Heterocyclic perimidines show antimicrobial and anorectic activity. The aim of the study is to highlight the most recent developments in perimidine synthesis under a variety of conditions.

**Synthetic Pathways to Perimidines**

An acid-catalyzed reaction of carboxylic acids and 1,8-diaminonaphthalene (Scheme 1) gives 2-substituted perimidine under microwave irradiation.

1,8-diaminonaphthalene reacts with 1,3,5-triazine in presence of polyphosphoric acid (Scheme 2) leads to perimidine.
In the presence of a catalytic volume of Cu(NO$_3$)$_2$.6H$_2$O in ethanol at room temperature, some perimidine subordinates is mixed by condensation reaction of 1,8 diaminonaphthalene and aromatic aldehydes. (Scheme 7)$^{53}

Perimidine is formed by reacting 1,8-diaminonaphthalene with aromatic aldehydes in the presence of NaY zeolite at room temperature. (Scheme 8)$^{54}$

The cyclocondensation method of various aromatic aldehydes with 1,8-diaminonaphthalene in the presence of nano-silica sulfuric acid (NSSA) as a catalyst has been used to create a reliable and direct method for the synthesis of perimidine subordinates. (Scheme 9)$^{55}$

Perimidines are produced by reacting 1,8-diaminonaphthalene with aromatic aldehydes at room temperature in the presence of NaY zeolite. (Scheme 10)$^{56}$

The reaction of naphthalene-1,8-diamine and active carbonyl compounds in water at room temperature showed InCl$_3$ to be a mild and viable impetus for the simple and fruitful union of spiro-perimidine subsidiaries. (Scheme 11)$^{57}$

The study explores the catalytic activity of H$_3$PW$_{12}$O$_{40}$/NaY and H$_3$PW$_{12}$O$_{40}$/NaY/MCM-41 hybrid materials in the synthesis of perimidine (Scheme 12)$^{58}$

By building up aryl diamines with -carbonyl mixtures catalysed by ytterbium chloride, an effective technique for combining functionalized benzimidazoles and perimidines is developed (Scheme 13)$^{59}$

The multicomponent reaction of heterocyclic ketene aminals with dialkylacetylenedicarboxylates in the presence of DMAP is a suitable technique for the preparation of isoindole derivatives (Scheme 14)$^{60}$
Using boric acid (HBOB) as a catalyst and ketone as a substrate, an efficient method for the synthesis of substituted perimidine derivatives is described (Scheme 15).\(^{61}\)

**Scheme 15**

Another and proficient admittance to (Z)-N-(2-argio-1-(1H-perimidin-2-yl)vinyl)benzamide subsidiaries from promptly accessible substrates in HOAc is depicted with help of microwave irradiation (Scheme 16).\(^{62}\)

**Scheme 16**

The reaction of 1,8-diaminonaphthalene and aromatic aldehydes in the presence of molecular iodine as a highly active catalyst yielded a few perimidines in high to exceptional yields (Scheme 17).\(^{63}\)

**Scheme 17**

Using cyclocondensation of various aldehydes and ketones with 1,8-diaminonaphthalene in ethanol as a solvent at room temperature, sulfonated ordered nanoporous carbon effectively catalyses the synthesis of perimidines (Scheme 18).\(^{64}\)

**Scheme 18**

The reaction of 1,8-diaminonaphthalene with iminoester hydrochlorides of substituted phenylacetic acids with microwave irradiation is identified for the synthesis of 2-substituted perimidines (Scheme 19).\(^{65}\)

**Scheme 19**

Synthesis of Perimidine and 1,5-Benzodiazepine Derivatives Using Tamed Brønsted Acid, BF3-H2O as a catalyst (Scheme 20).\(^{66}\)

**Scheme 20**

Another technique for union of 2-aryl-2,3-dihydro-1H-perimidines by buildup of 1,8-diaminonaphthalene with a variety of aromatic aldehydes utilizing nano-CuY zeolite as catalyst, in ethanol, at room temperature (Scheme 21).\(^{67}\)

**Scheme 21**

A proficient convention has been created to incorporate different dihydro-1H-perimidine subordinates utilizing financially accessible Amberlyst-15 as a catalyst (Scheme 22).\(^{68}\)

**Scheme 22**

A successful union of different organically significant 2,3-dihydroperimidines from response of aldehydes and naphthalene-1,8-diamine has been created utilizing [BTBA] Cl-FeCl\(_3\) as an effective Lewis corrosive ionic fluid (Scheme 23).\(^{69}\)

**Scheme 23**
Functionalized magnetic center shell nanoparticles arranged by co-precipitation strategy, is a powerful and recyclable catalyst for the combination of imidazole, benzothiazole, and perimidine subsidiaries, under solvent free conditions (Scheme 24).\textsuperscript{70}

\begin{center}
\begin{tikzpicture}
  \node[draw, shape=circle, fill=blue!20] (A) at (0,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (B) at (1,0) {\text{CHO}};
  \node[draw, shape=circle, fill=blue!20] (C) at (2,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (D) at (3,0) {\text{Ar}};
  \node[draw, shape=circle, fill=blue!20] (E) at (4,0) {\text{R}};
  \draw [-] (A) -- (B);
  \draw [-] (B) -- (C);
  \draw [-] (C) -- (D);
  \draw [-] (D) -- (E);
  \node[above] at (2.5,0) {\text{Scheme 24}};
\end{tikzpicture}
\end{center}

Nanoparticles as an efficient catalyst for synthesis of mono-, bis-, tris- and spiro-perimidines have been reported (Scheme 25).\textsuperscript{71}

\begin{center}
\begin{tikzpicture}
  \node[draw, shape=circle, fill=blue!20] (A) at (0,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (B) at (1,0) {\text{R}};
  \node[draw, shape=circle, fill=blue!20] (C) at (2,0) {\text{R}};
  \node[draw, shape=circle, fill=blue!20] (D) at (3,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (E) at (4,0) {\text{R}};
  \draw [-] (A) -- (B);
  \draw [-] (B) -- (C);
  \draw [-] (C) -- (D);
  \draw [-] (D) -- (E);
  \node[above] at (1.5,0) {\text{Scheme 25}};
\end{tikzpicture}
\end{center}

Gentle and relevant blend of mono-, bis-, and spiro-perimidines is exhibited in significant yields by means of the buildup of 1,8-diaminonaphthalene and aldehydes or ketones in presence of sulfamic acid as a green and exceptionally effective catalyst (Scheme 26).\textsuperscript{72}

\begin{center}
\begin{tikzpicture}
  \node[draw, shape=circle, fill=blue!20] (A) at (0,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (B) at (1,0) {\text{R}};
  \node[draw, shape=circle, fill=blue!20] (C) at (2,0) {\text{R}};
  \node[draw, shape=circle, fill=blue!20] (D) at (3,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (E) at (4,0) {\text{R}};
  \draw [-] (A) -- (B);
  \draw [-] (B) -- (C);
  \draw [-] (C) -- (D);
  \draw [-] (D) -- (E);
  \node[above] at (1.5,0) {\text{Scheme 26}};
\end{tikzpicture}
\end{center}

An easy immediate technique to blend the perimidine under dissolvable free conditions as another strategy is accounted under microwave irradiation (Scheme 27).\textsuperscript{73}

\begin{center}
\begin{tikzpicture}
  \node[draw, shape=circle, fill=blue!20] (A) at (0,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (B) at (1,0) {\text{R}};
  \node[draw, shape=circle, fill=blue!20] (C) at (2,0) {\text{R}};
  \draw [-] (A) -- (B);
  \draw [-] (B) -- (C);
  \node[above] at (1,0) {\text{Scheme 27}};
\end{tikzpicture}
\end{center}

The response of 1,8-diaminonaphthalene with aromatic aldehydes gave 2-subbed perimidines within the sight of FePO$_4$ as a flexible, green and reusable impetus at room temperature (Scheme 28).\textsuperscript{74}

\begin{center}
\begin{tikzpicture}
  \node[draw, shape=circle, fill=blue!20] (A) at (0,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (B) at (1,0) {\text{CHO}};
  \draw [-] (A) -- (B);
  \node[above] at (0.5,0) {\text{Scheme 28}};
\end{tikzpicture}
\end{center}

Synthesis of 2,3-dihydro-1H-perimidines subordinates was set up by considering a response between naphthalene-1,8-diamine and ketone within the sight of Phenyl boronic corrosive as an catalyst utilizing ethanol as a solvent (Scheme 29).\textsuperscript{75}

\begin{center}
\begin{tikzpicture}
  \node[draw, shape=circle, fill=blue!20] (A) at (0,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (B) at (1,0) {\text{R}};
  \node[draw, shape=circle, fill=blue!20] (C) at (2,0) {\text{R}};
  \draw [-] (A) -- (B);
  \draw [-] (B) -- (C);
  \node[above] at (1,0) {\text{Scheme 29}};
\end{tikzpicture}
\end{center}

A novel attractive nanocatalyst as a green, efficient and recoverable nanocatalyst pyrimidine subsidiaries could be effortlessly arranged utilizing this novel nanocatalyst in brilliant yields (Scheme 31).\textsuperscript{77}

\begin{center}
\begin{tikzpicture}
  \node[draw, shape=circle, fill=blue!20] (A) at (0,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (B) at (1,0) {\text{R}};
  \node[draw, shape=circle, fill=blue!20] (C) at (2,0) {\text{R}};
  \draw [-] (A) -- (B);
  \draw [-] (B) -- (C);
  \node[above] at (1,0) {\text{Scheme 31}};
\end{tikzpicture}
\end{center}

Nano-g-Al$_2$O$_3$/SbCl$_5$ has been utilized for combination of 2-subbed perimidines by means of response of naphthalene-1,8-diamine with different aldehydes at room temperature under dissolvable free conditions (Scheme 32).\textsuperscript{78}

\begin{center}
\begin{tikzpicture}
  \node[draw, shape=circle, fill=blue!20] (A) at (0,0) {\text{NH$_2$}};
  \node[draw, shape=circle, fill=blue!20] (B) at (1,0) {\text{CHO}};
  \draw [-] (A) -- (B);
  \node[above] at (0.5,0) {\text{Scheme 32}};
\end{tikzpicture}
\end{center}
The reactant movement of SiO\textsubscript{2} nanoparticles (NPs) as an eco-friendly, efficient and reusable impetus in the combination of 2,3-dihydro-1H-perimidines was found out (Scheme 33). 

The synergist execution of Ni/TCH@SBA-15 (NNTS-15) was resolved for the amalgamation of 2,3-dihydroperimidines (Scheme 38). 

Hybrid nanomaterial was utilized as an effective impetus in the one-pot, green and straightforward convention for the combination of spiropimidine subsidiaries (Scheme 39).

Squaric acid, a green, without metal and eco-accommodating organocatalyst, has been abused for the union of organically fascinating 2,3-dihydro-1H-perimidines (Scheme 40).

An epic amalgamation of profoundly combined perimidine subsidiaries was accomplished in two stages from 2-alkynylbenzaldehydes. Copper-catalyzed annulation of 2-[(2bromophenyl)ethynyl]benzaldehydes with 1,8-diaminonaphthalene created dihydroisoquinolino[2,1-a]perimidines (Scheme 41).

---

**Scheme 33**

Proficient amalgamation of perimidine subordinates utilizing recently used chitosan hydrochloride was created (Scheme 34).

**Scheme 34**

Fe\textsubscript{3}O\textsubscript{4}-stacked sulfonated zeolite was applied as a novel multi-functional zeolite impetus for the blend of perimidine subsidiaries (Scheme 35).

**Scheme 35**

Fe\textsubscript{3}O\textsubscript{4}@NCs/BF0.2 was utilized for the amalgamation of 2,3-dihydro-1H-perimidine subsidiaries through a response of 1,8-diaminonaphthalene with different aldehydes at room temperature under dissolvable free conditions (Scheme 36).

**Scheme 36**

The Mn-catalyzed dehydrogenative amalgamation of primarily significant 2,3-dihydro-1H-perimidines has been illustrated (Scheme 37).

**Scheme 37**

A Cu(OAc)\textsubscript{2}-catalyzed chain reaction tricyclization of naphthalene-1,8-diamine and 2-(phenylethynyl) benzaldehyde is described, allowing oxygen-consuming oxidative dehydrogenation coupling to
heptacyclicquinazolinino[3,4,5,6-kla]perimidines to be obtained Scheme 42).\textsuperscript{88}

For the union of perimidines, another green protocol was established. The protocol involves a dissolvable and impetus-free reaction of ethoxycarbonylhydrazone with 1,8diaminonaphthalene. (Scheme 46).\textsuperscript{92}

A few extremely successful one-pot manufactured methodswere established, allowing polyphosphoric acid activated nitroalkanes to act as electrophiles in aminatingonaphthalene reactions. The methods illustrated consider the single-step set of polyheterocyclic aromatic subsidiaries of the 6H-pyrrolo[2,3,4-gh] perimidine platform in substantial returns. (Scheme 44).\textsuperscript{90}

A active one-pot mix of two new heterocyclic perimidines, 4-(2,3-dihydro-1H-perimidin-2-yl)-2-methoxyphenol and 2-(2,3-dihydro-1H-perimidin-2-yl)-2-methoxyphenol and 2-(2,3-dihydro-1H-perimidin-2-yl)-2-meth (quinoxalin-2-yl) - Strong yields of 2,3-dihydro-1H-perimidine are produced. (Scheme 45).\textsuperscript{91}

Conclusions

Perimidine synthesis remains a highly active area of research due to its diverse range of natural exercises, and its readiness will continue to be a significant task in the future. The development of manufactured routes for the preparation of perimidines has progressed in ways previously deemed challenging. In this report, an attempt was made to cover all of the major events and developments in science over the last few decades, which have seen exponential growth. These new reactions produce highly functionalized perimidines in good to excellent yields. A few approaches cover more recent techniques, cleaner synthetic substances that are not toxic to the environment, both of which lead to
enhancing blend courses, reducing reaction projects, and making the relationship greener. Regardless of these developments, further work on designing new perimidine methods is expected. To offer pathways to the formation of neglected perimidines, new impetuses and synthetic improvements are needed, resulting in the disclosure of perimidines with new properties and natural exercises. We conclude this survey by hoping that it will inspire scientists to develop new and inventive manufactured access routes to this heterocyclic system, which will be critical in the advancement of many fields of research.

Acknowledgments
The authors acknowledge the Department of Chemistry, Mahatma Gandhi Vidyamandir’s SPH Arts, Science and Commerce College, Nampur and Department of Chemistry, Pune District Education Association’s Annasaheb Magar Mahavidyalaya, Hadapsar, Pune for providing necessary facilities.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest
No potential conflict of interest was reported by the authors.

References

10. Adole, V.A., Pawar, T.B. and Jagdale, B.S., 2020. Aqua-mediated rapid and


79. Alinezhad, H., Ahmadi, A. and Hajjabbasi, P.


