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Abstract
A short review on a thermodynamically consistent 
multiphase phase-field approach for virtual melting has 
been presented. The important outcomes of solid-solid 
phase transformations via intermediate melt have been 
discussed for HMX crystal. It is found out that two nano 
scale material parameters and solid-melt barrier term in 
the phase-field model significantly affect the mechanism 
of PTs, induces nontrivial scale effects, and changes PTs 
behaviours at the nano scale during virtual melting.
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Phase-field (PF) approach1,2 has been widely used 
to captures various solid-solid phase transitions 
(PTs).3–11 Lately, it has been discovered that the 
finite-width interface plays a crucial role in controlling 
PTs for the different material systems12,13 such as  
PTs via intermediate molten state (IM) which has 
been observed experimentally hundreds of degrees 
below the thermodynamic melting temperature in 
HMX.14,15 Such a transitional, metastable interface 
is called a virtual melt.16–19 Additionally, it has been 
found that such virtual melt induces nontrivial 
scale effects, and changes phase transformation 
behaviours at the nanoscale.20 Previously, a PF 
model was developed to describe solid-solid PT 
via IM in hyperspherical order parameter which 
is limited for n=3 phase-system.20 More recently, 

a multiphase phase-field (MPF) theory has been 
proposed for generalized n phase-system to 
capture such intriguing PT mechanism during virtual 
melting.21 This MPF model is thermodynamically 
consistent and satisfies all thermodynamic stability 
conditions.21–24 One of the advantages of the MPF 
model is that, for each of the propagating solid-melt 
and solid-solid interfaces, the analytical solutions 
for width, energy, and velocity can be derived.21,22,25 
Thus, interface material properties can be fully 
calibrated and characterized for all interfaces.  
In the aforementioned MPF model, two dimension 
less parameters at the nanoscale [e.g., ratios of 
width and energy of two different interfaces, kE  

(or ∆Ψ) and kδ (or ∆Γ)] can be explicitly defined and 
controlled during PT. These parameters significantly 



103ROY Mat. Sci. Res. India, Vol. 18(2), pg. 102-107 (2021)

affect the formation and stability of virtual melt during 
solid-solid PT in HMX.21–24 The MPF approach has 
been employed to investigate the appearance 
and corresponding thermodynamic, and structure 
of IM for a three-phase system.22,24 Additionally,  
a detailed study on barrierless melt nucleationin 
HMX has been reported for propagating IM.23  

The kinematics and energetic of appearance of IM 
have been detailed.25 It is found out that the nano 
scale material parameters and solid-melt barrier 
termin the MPF model significantly affect the 
mechanism of PTs, induces nontrivial scale effects, 
and changes PTs behaviours at the nano scale  
during  virtual melting.22,24,23,26

Fig.1: (η1 + η2)min has been shown as a function of kE at (a) θ = 402 K and (b) θ* = 422 K for K12 = 
1010J/m3. Reprinted from22 with the permission of AIP Publishing, 2021

In the above mentioned MPF model, order 
parameter’s(η i) evolution has been described 
by  G inzbu rg -Landau(G-L )equa t i ons , 21 ,22  

 
where ψl is the local part of the Helmholtz free energy 
ψθ=ψl+ψ  (see21,22 for detail). In Fig.1, different 
scale effects and non-trivial phase transformation 
mechanism has been observed when the influence 
of kE (or ∆Ψ) which characterizes the energy of 
two different interfaces on the appearance and 
disordering of IM has been explored for two 
different non-equilibrium temperatures where  
ξϕ=(η1+ η2)min indicates the disordering. For different 
critical values of kE (i.e., kC

E) and depending on the 
energy barrier of the solid-melt interface K12(or Σδβ), 
two different solutions exist for kE <kc

E For relatively 
low kδ (or ∆Γ):one is solid-melt-solid interface 
solution with high disordering of IM at the interface, 
and another one is solid-solid interface solution 
with lowd is ordering of IM at the interface. At first 
critical value kE =(kE

c)I, jump occurs between solid-
melt-solid initial condition(SMS) solution to less 
disordered IM solution. Whereas, at second critical 
value kE =(kE

c)I I, second jump occurs from solid-solid 
initial condition(SS) solution to high disordered IM 
solution. Hence, the solution of propagating inter 

facial melt can be either continuous-reversible 
without the hysteresis or jump-like first order 
discontinuous transformation with hysteresis.  
In Fig.2, the influence of temperature on the 
appearance of propagating interfacial melt has been 
explored where ξϕ indicates the disordering. From 
the simulation results, it is clear that increasing 
temperature θ increases the disordering ξϕ of inter 
facial melt for all ∆Ψ, ∆Γ(or kE, kδ). For relatively small 
∆Γ, the solution of ξϕ is continuous-reversible for both 
solid-melt-solid and solid-solid initial conditions. 
However, for relatively large ∆Γ, one is a solid-melt-
solid interface solution with a high disordering of IM 
at the interface during solidification and another one 
is a solid-solid interface solution with low disordering 
of IM at the interface during melting at some critical 
value of temperature. These two different solutions 
correspond to two different nanostructures that 
produce a” hysteretic region”. From the numerical 
result, it is evident that the appearance of nucleated 
melt can form much below thermodynamic melting 
temperature and different ∆Ψ and ∆Γ control the 
width of the temperature hysteresis curve and 
melt formation temperature. The appearance of 
such nontrivial multiple solutions of IM could not 
be captured by the simplified thermodynamic 
descriptions which did not consider interface width as 
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a scale parameter (i.e., kδ), thus, can only predict a 
single solution of IM and the formation of IM (or melt) 
can only possible for kE>2 close to thermodynamic 
equilibrium melt temperature.

Summarizing, the numerical results from the MPF 
model indicate a new perspective of solid-solid PT 
via transitive virtual melt in HMX. The penalizing 
potential in MPF formalism significantly controls  
the existence of virtual melt by limiting the pure 
solid-solid interface solution in order parameter 
space. Hence, these two scale parameters and 

penalizing term K12 (or Σ δ β) influence the formation 
of virtual melt much below the thermodynamic 
melting temperature. The presented MPF model 
demonstrates the general applicability of this 
formalism to capture first-order jump-like PT as well 
as second-order continuous PTs. In addition, such 
MPF approach can be utilized to capture various 
PTs27 such as martensitic PTs,9–11,28–40 evolution of 
nano voids,41–44 surface-induced melting,45–47 grain 
boundary premelting,48–53 interface modelling in 
composite,55 and crack propagation,56,57

Fig. 2: (η1 + η2)min has been plotted as a function of θ for different ∆Γ for Σδβ = 1.  
Reprinted from23 with the permission of Elsevier, 2021
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