High Temperature XRD of Phase Transition in Piezoelectric PbNb$_2$O$_6$ across its Curie Temperature

UDAYAN DE1, KRITI RANJAN SAHU2 and KEKA.R. CHAKRABORTY3

1Calcutta Institute of Engineering & Management, Kolkata, 700040, India.
2Physics Dept., ESSB College, Egra, Purba Medinipur, W.Bengal, 721429 India.
3Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 India.

http://dx.doi.org/10.13005/msri/130103
(Received: June 09, 2016; Accepted: June 21, 2016)

ABSTRACT

Orthorhombic phase of lead metaniobate (PbNb$_2$O$_6$) is piezoelectric with a high Curie temperature (>570°C) with high potential of wide use in important high temperature applications that cannot be covered by the popular piezoelectric materials based on BT and PZT. Difficulty of preparing it in pure phase hindered full characterization and wide use of this long known piezoelectric material. Here, PbNb$_2$O$_6$ pellets have been prepared in pure orthorhombic phase and first characterized by room temperature TEM and XRD techniques, with a satisfying agreement of the two results. Next, we carried out high temperature x-ray diffraction study of its ferroelectric to paraelectric phase transition on heating across the Curie temperature, and also traced the cooling path. On heating the sample to 590°C and cooling back, there is a significant increase of cell volume.

Keywords: Piezoelectric materials, Orthorhombic PbNb$_2$O$_6$, Tetragonal PbNb$_2$O$_6$, Curie Temperature, Ferroelectric Phase Transition, TEM, High Temperature XRD, Rietveld Refinements.

INTRODUCTION

Piezoelectric materials are finding increasing utilization as sensors, actuators, ultrasonic imaging devices, and in many other commercially profitable applications. For applications in critical areas like Fast Breeder Reactors and exhausts of rockets and vehicles, piezoelectric materials with high Curie temperature1 are essential. Among the few materials in different stages of development for higher temperature piezoelectric devices, less work has been done on the old but inadequately studied piezoelectric material2,3 of lead metaniobate (PbNb$_2$O$_6$ or PN). Room temperature structure of PN can be3,4 either rhombohedral or orthorhombic. Only the latter is ferroelectric with piezoelectric properties, attractive because of attractively high Curie temperature5 (> 570°C). Fewer studies on PN, in spite of this high Curie temperature, have been basically due to the problem of preparing, by quenching6, the piezoelectric form (the meta-stable orthorhombic structure) in pure phase. Subsequently, various aspects have not been re-studied in modern times. We decided to investigate with high temperature (HT) x-ray diffraction (XRD) the structural changes during ferroelectric to paraelectric phase transition on heating across the Curie temperature and trace the cooling path also, of orthorhombic PbNb$_2$O$_6$, characterized at room temperature by XRD and TEM (Transmission Electron Microscopy). We have optimized preparation steps3 including the quenching (Q) step, and prepared pure orthorhombic phase of PN, to be called PNOQL, with L denoting the supplier (Loba) of Nb$_2$O$_5$ used in the preparation.

MATERIALS AND METHODS

Sample Preparation

Pellets from starting chemicals of PbO and Nb$_2$O$_5$ with 2% extra weight of PbO (to compensate
for feared loss of Pb during firing) have been calcined first for 3.5 h at 1050°C, and then at 1290°C for 1 h. The 3rd firing (about 5 h) at 1270°C has branched into quenched (PNOQ or PNOQL) and slow-cooled (PNS) samples.

HT XRD study

Using Cu Kα radiation with α1 = 1.54056 Å and α2 = 1.54439 Å, generator voltage = 40 V, tube current = 30 A, scan step size = 0.02, and scan step time = 0.50 s, x-ray powder diffraction has been carried out (Figs. 1-5) at different temperatures on PNOQL sample: 30°C, 550°C, 570°C and 590°C. After soaking at 590°C for about 1 hour, the powdered sample has been cooled back, and XRD has been taken again at 30°C. Rietveld refinements have next been done, as depicted in Figs. 1 & 3-5, to extract lattice parameters, given in Table 1, and a pictorial representation (Fig. 2).

Fig. 1 Open circle symbols (black), giving XRD data for PNOQL at 30°C, fit closely the Rietveld refined plot (the continuous red curve in the main graph). Their difference is shown by the continuous curve in the smaller-sized graph (green in color). The vertical bars (blue color) in the main graph are the calculated peak positions.

TEM examination

Practically the same inter-layer separation (d) (in table 2) has been obtained by Transmission Electron Microscopy (Fig. 6, d(TEM)), and by x-ray, d(XRD), for the orthorhombic PbNb₂O₆ sample at room temperature.

RESULT AND DISCUSSION

The temperature variation of lattice parameters (a, b and c) of the orthorhombic PNOQL sample, from room temperature (RT) to 590°C and return to RT, has been shown graphically in Fig. 7. This matches well with the original work of Francombe and Lewis. As the temperature is raised from 30°C to 550°C, the lattice parameter ‘a’, indicated by open circle, increases (from 17.6515 Å to 17.7587 Å) and the lattice parameter ‘b’, indicated...
by open rectangle, decreases (from 17.9484 Å to 17.7875 Å) so that the two approach a common value beyond ~570°C, the temperature for transition from orthorhombic to tetragonal structure. This corresponds also to the Curie temperature, above which piezoelectric and ferroelectric properties disappear to pave the way for a paraelectric phase. Plot of (b-a) vs. temperature in Fig. 8 also shows a decrease of (b-a) towards zero. Over the temperature range 30°C to 590°C the ‘c’ parameter, indicated by open down triangle, increases linearly (from 3.8734 Å to 3.9228 Å). Unit cell volume is seen in Fig. 9 to increase rapidly with temperature in the orthorhombic phase, and only slightly above Curie temperature. The powdered sample has been heated from 30°C to 590°C, soaked at 590°C for about 1 hour and then cooled down to 30°C. Parameters a, b and c have been re-measured by XRD at 30°C. The values of lattice parameters increase slightly after this 590°C cycling (with soaking at the high temperature) of the

Fig. 5: Open circle symbols (black colour), giving XRD data for PNOQL at 590°C, fit well the Rietveld refined plot.

Fig. 6: TEM diffraction pattern (a) and images of different atomic planes of PNOQL sample (b, c, e and f) and inset view of XRD (d). It shows <130> planes in (b) and (c), <310> plane in (e), and <111>, <020>, <240> and <220> planes in (f).
Fig. 7: Graphical representation of the variation of lattice parameters a, b, and c with temperature cycling.

Fig. 8: Variation of the difference (b – a) and c with temperature.

Fig. 9: Variation of unit cell volume (V) of PbNbO$_4$ with rise in temperature from 30°C to 590°C as calculated from present XRD results. On heating the sample to 590°C and cooling back, there is an increase of volume.
samples: \(a \sim 0.107\%\), \(b \sim 0.198\%\), and \(c \sim 0.078\%\) with Fig. 7 showing the value after the heating (cycle) by the upper point with same symbol.

Lattice dimension measured by TEM from different spots of the orthorhombic \(\text{PbNb}_2\text{O}_6\) sample match the averaged value measured by x-ray diffraction, confirming the correctness of both characterizations. The high temperature structure is tetragonal. Electrical\(^ {11}\) and thermal\(^ {12}\) techniques showed the Curie temperature to be above 570°C. Below Curie temperature, \(a < b < c\), and the sample is ferroelectric with piezoelectric properties.

Loss of piezoelectric properties\(^ {11, 12}\) above this temperature is accompanied by increase of \(a\), and decrease of \(b\), to make \(a = b\), as indicated in our \((b-a)\) vs. \(T\) plot. Unit cell volume is seen to increase rapidly with temperature in the orthorhombic phase, and only slightly above Curie temperature. It is a new observation that room temperature cell volume increases on heating the sample to 590°C and cooling back to room temperature.

Table 1: Lattice parameters of \(\text{PbNb}_2\text{O}_6\) as a function of temperature (orthorhombic below Curie temperature and tetragonal above)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>(a) (Å)</th>
<th>(b) (Å)</th>
<th>(c) (Å)</th>
<th>(z = y)</th>
<th>Unit cell volume (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30(before)</td>
<td>17.651(5)</td>
<td>17.948(4)</td>
<td>3.873(4)</td>
<td>90.00</td>
<td>1227.145</td>
</tr>
<tr>
<td>550</td>
<td>17.758(7)</td>
<td>17.787(5)</td>
<td>3.920(2)</td>
<td>90.00</td>
<td>1238.317</td>
</tr>
<tr>
<td>570</td>
<td>17.781(5)</td>
<td>17.791(3)</td>
<td>3.921(7)</td>
<td>90.00</td>
<td>1240.624</td>
</tr>
<tr>
<td>590</td>
<td>17.778(1)</td>
<td>17.793(7)</td>
<td>3.922(8)</td>
<td>90.00</td>
<td>1240.939</td>
</tr>
<tr>
<td>30(after)</td>
<td>17.670(5)</td>
<td>17.984(1)</td>
<td>3.876(4)</td>
<td>90.00</td>
<td>1231.865</td>
</tr>
</tbody>
</table>

Table 2: Comparison of inter-planar separations, \(d\), of orthorhombic \(\text{PbNb}_2\text{O}_6\) sample, as found by Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD)

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>(d_{\text{TEM}}) (Å)</th>
<th>(d_{\text{XRD}}) (Å)</th>
<th>Plane</th>
<th>2(\theta) or Bragg’s angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNOQL</td>
<td>5.5878</td>
<td>5.5770</td>
<td>310</td>
<td>15.88</td>
</tr>
<tr>
<td>(Orthorhombic)</td>
<td>5.6244</td>
<td>5.6629</td>
<td>130</td>
<td>15.62</td>
</tr>
<tr>
<td>(\text{PbNb}_2\text{O}_6)</td>
<td>3.75695</td>
<td>3.6904</td>
<td>111</td>
<td>23.02</td>
</tr>
<tr>
<td></td>
<td>4.0003</td>
<td>3.9463</td>
<td>240</td>
<td>22.20</td>
</tr>
<tr>
<td></td>
<td>6.2894</td>
<td>6.2889</td>
<td>220</td>
<td>14.06</td>
</tr>
<tr>
<td></td>
<td>9.1141</td>
<td>8.9688</td>
<td>020</td>
<td>9.85</td>
</tr>
</tbody>
</table>

REFERENCES

