SUSTAINED RELEASE FORMULATIONS OF METOPROLOL TARTRATE USING HYDROPHILIC MATRIX SYSTEM

T. K. Pal¹ and S. Siddique²

¹Department of Pharmaceutical Technology, Jadavpur University, Kolkata - 700 032 (India)
²Department of Pharmaceutics, Rajiv Gandhi College of Pharmacy, Bhopal - 462 042 (India)

(Received, 27 November, 2005)

ABSTRACT

The Objective of the study is to design oral controlled drug delivery systems for highly water-soluble drugs, using Hydroxypropyl methyl cellulose (HPMC)- a non-ionic hydrogel. Metoprolol tartrate was chosen as a model drug because of its high water solubility¹. Matrix tablets containing about 35% of HPMC were prepared by wet granulation technique. The matrix tablets were evaluated for hardness, thickness, uniformity and subjected to in vitro drug release studies. The drug release from the metoprolol tartrate matrix tablets was according to Higuchi's laws showed a quicker release at the beginning and slower at the end which is a characteristic of an inert matrix with pores. The result indicated that HPMC is a potent carrier in the design of oral controlled drug delivery systems for highly water soluble drugs such as metoprolol tartrate.

Keywords: Metoprolol tartrate and hydrophilic matrix system.

INTRODUCTION

Sustained release dosage forms are now becoming increasingly popular. Matrix sustained release tablets have proved especially favourable, since they can be produced at relatively low cost using suitable excipients. Sustained release dosage form include single-unit and multi-unit forms as well as coated forms and matrix forms. But production of coated single unit forms has been regarded as a malpractice, as the risk of dose dumping due to an incorrectly applied coating, or damage to a coating was too high. Metoprolol tartrate is one of the most useful antihypertensive drug will plasma half life of 3-4 hr only.

EXPERIMENTAL

Materials


Manufacture of Tablets

Metoprolol tartrate was granulated with HPMC,mixed with other excipients for 10 minutes and compressed into tablets with a force of about 10KN.

Tablet Composition

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metoprolol tartarate</td>
<td>200mg</td>
</tr>
<tr>
<td>Hydroxypropyl Methyl Cellulose</td>
<td>160mg</td>
</tr>
<tr>
<td>Starch</td>
<td>38.2mg</td>
</tr>
<tr>
<td>Lactose</td>
<td>38.2mg</td>
</tr>
<tr>
<td>Microcrystalline cellulose</td>
<td>22mg</td>
</tr>
<tr>
<td>Magnesium Stearate</td>
<td>2.2mg</td>
</tr>
<tr>
<td>Total Tablet Weight</td>
<td>460.6mg</td>
</tr>
</tbody>
</table>

Determination of Tablet properties

Dimensions, weight, friability and hardness using vernier Caliper (Mitutoyo, Japan), Electronic Balance, (ANAMED instruments (P) Ltd.), Roche friabilator (for 4min, 25rpm) and ERWEKA TBT 28 apparatus (Erweka GmbH, Germany) respectively.

In vitro Drug Dissolution Studies

The dissolution experiment was performed in dissolution test apparatus (USP std.) paddle method, 100rpm, 37°C, using Phosphate buffer pH 6.8 for 2 to 12 hr³. The drug concentration was measured using a UV spectrophotometer (Genesys-2) at 254nm.
RESULTS AND DISCUSSION

Tablet parameters
- Weight: 460.6mg.
- Diameter: 12mm
- Thickness: 4mm
- Form: Biplanar
- Hardness: 220 N
- Friability: 0.1%

The drug release from the matrix tablets was almost according to Higuchi's law showing a quicker release at the beginning and slower at the end. Controlled release of metoprolol tartrate for a period of more than 12 hrs was obtained.

Conclusion
- Sustained release matrix tablet formulation showed good, physical tablet properties and dissolution rate. Thus HPMC can be used as a potent carrier in the design of oral controlled drug delivery systems for highly water soluble drugs such as metoprolol tartrate and an excellent in vitro dissolution rate can be obtained by slight modification of the above formula.

REFERENCES