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Abstract
Hydrogen fuel cell technology is now being extensively researched around 
the world to find a reliable renewable energy source. Global warming, national 
calamities, fossil-fuel shortages have drawn global attention to environment 
friendly and renewable energy source. The hydrogen fuel cell technology 
most certainly fits those requisites. New researches facilitate improving 
performance, endurance, cost-efficiency, and overcoming limitations of the 
fuel cells. The various factors affecting the features and the efficiency of a 
fuel cell must be explored in the course of advancement in a specific manner. 
Temperature is one of the most critical performance-changing parameters of 
Proton Exchange Membrane Fuel Cells (PEMFC). In this review paper, we 
have discussed the impact of temperature on the efficiency and durability 
of the hydrogen fuel cell, more precisely, on a Proton Exchange Membrane 
Fuel Cell (PEMFC). We found that increase in temperature increases the 
performance and efficiency, power production, voltage, leakage current, 
but decreases mass crossover and durability. But we concluded with the 
findings that an optimum temperature is required for the best performance. 
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Introduction
In the face of global warming, carbon pollution, fossil 
fuel decline hydrogen fuel cell is an exciting new 

platform to cope up with both fuel and environmental 
issues.1,2 In the modern world, there is a huge 
demand for hydrogen fuel in the industries. Hydrogen 
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gas can be produced from fossil fuel (coal, gas, 
petroleum etc.) or renewable energy sources (solar, 
wind, geothermal energy, biogas, biomass, etc.).3,4 
This hydrogen gas can be a universal fuel that can 
be produced using all existing fuel sources and 
can be stored for any time of future use. In a fuel 
cell, electricity is produced with a chemical reaction 
between hydrogen and oxygen where hydrogen 
gives an electron by oxidation reaction to the anode 
and becomes an electron less hydrogen ion called 
proton.4-6 This proton passes through the proton 
exchange membrane and reacts with oxygen by a 
reduction reaction with the formation of water and 
heat. In the external circuit, the electron flow gives 
the output current load. We can get electricity from 
an electrochemical reaction with zero emission of 
harmful chemicals and gases. That’s why the fuel 
cell technology is considered to be sustainable and 
emission-free fuel solution for future demand. 7-10 The 
fuel cell has a wide range of applications. Because it 
operates with less start-up-time, zero knocking, no 
carbon emission and modern electricity production 
technology. It can be a source of energy for vehicles, 
industries, electricity demand, and even household 
chores. A fuel cell can meet MW level power demand 
in the grid. The power of the fuel cell may remain side 
by side of the grid. When the grid power becomes 
low then the fuel cell power can be a good alternative 
source of power with kW level. 

In the electrochemical reaction in a fuel cell, there 
is a generation of heat along with the electricity and 
water.4-8,11 This heat can be used in the water boiling 
system with 90% efficiency. Fuel cells are being used 
in vehicles as a mobile battery. 12-14 Without polluting 
the environment, electricity can be produced along 
with heat and water from hydrogen and oxygen gas 
fed into the PEMFC. In this reaction process, there 
are a lot of parameters to be considered to make 
the reaction process continue for a long duration 
without interruption. The different factors affecting 
the architecture and the performance of a fuel cell 
must be explored in a precise manner in the way 
of progress.12-19 Among all the parameters, the 
temperature of a fuel cell is a significant performance 
changing factor. 7-9,14 In this review paper we will focus 
on the effects of temperature on the performance and 
durability of hydrogen fuel cell and more specifically, 
a Proton Exchange Membrane Fuel Cell (PEMFC).  

Mechanism of Hydrogen Fuel Cell
The main theme of a PEMFC is to produce electricity 
from the electrochemical reaction between hydrogen 
and oxygen reactant. 1,2 In this reaction electricity, 
heat, and water are produced. This electrochemical 
reaction happens with two electrodes separate 
with a proton exchange membrane. In the anode 
side, a hydrogen oxidation reaction occurs and in 
the cathode side, an oxygen reduction reaction 
occurs.8 For uniform reaction over the surface of 
the electrode, there is a gas diffusion layer. This 
gas diffusion layer will drive the gas all over the 
electrode to control the optimum performance of 
the reaction. Oxidation and reduction reactions are 
a slow process without any catalyst. For better and 
continuous operation, we need to introduce catalyst 
in the electrode. In the anode side, hydrogen gas 
is changed into hydrogen atom (proton, H+) and 
the electron goes through the outer circuit.14 Now 
only proton can pass through the proton exchange 
membrane. Hydrogen or oxygen gas is not permitted 
to pass through the proton exchange membrane. On 
the cathode side, oxygen gas comes from the air 
and passes through the gas diffusion layer, and with 
the help of the oxygen reduction reaction electricity, 
water, and heat are produced.14,17 Figure 1 shows 
the mechanism of the PEMFC. 

The full reaction is mentioned below. 17-21, 24,25

2H2 + O2 → 2H2O + energy

Anode Half Reaction:
2H2 → 4H+ + 4e-

Cathode Half Reaction:
O2 +4H+ + 4e- → 2H2O

Among fuel cells, the proton exchange membrane 
fuel cell (PEMFC) gather much attention because of 
some unique criteria such as low thermal condition 
of operation, greater efficiency, shorter in size.10 
The proton exchange membrane has hydrophilic 
and hydrophobic characteristics at the same time.  
Table 1 shows the types of PEMFC and their features. 
The design of the membrane remains durable for the 
hydrophobic part of the membrane, on the other 
hand, the hydrophilic part helps the membrane to 
remain hydrated for the optimum operation of the 
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PEMFC.22,24-30 Water in the hydrated membrane helps 
proton to dissociate from the sulfonic acid part of the 
membrane material and the hydrogen ion (Proton) 

transfer from the anode side to the cathode side 
through the membrane. The input hydrogen gas must 
be pure up to 99.99%.

Fig. 1: Mechanism of PEMFC ( Source: https://publish.illinois.edu/fuel-cells/2012/11/11/pemfc/)

Table 1: Types of Proton Exchange Membrane Fuel Cell.

PEMFC Type Operating Temperature Features

 High Temperature-PEMFC Above 1000C I. Durable in high CO condition
  II. Well heat releasing system
  III. Humidification not required
Low Temperature-PEMFC 600C to 800C I. Gas permeability resistance is high.
  II. Cost effective technology

Factors Affecting the Performance of Hydrogen 
Fuel Cell
The performance of a PEMFC can be affected 
by many reasons. The load current, temperature, 
relative humidity, membrane thickness, membrane-
active area, electrode active area, corrosion, purity, 
pressure, and concentration of hydrogen fuel, 
maintenance of water inside the cell, pressure in the 
electrode particularly on both side of the membrane 
etc. are the factors.12-19, 22,28 

Activation, ohmic and concentration losses make the 
fuel cell voltage less than before. 29 Humid condition 
and thermal condition are two significant factors for 
PEMFC operation. The change in the temperature 
of a fuel cell affects the electrochemical reaction, 
proton exchange, and water production.  The bipolar 
plate has two sides.30,31 On one side there is a gas 
flow path and on the other side, external water flow 
is used for temperature maintenance in the fuel 
cell. Rising current density accelerates the reaction 
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process.17-19 Besides, the heat production in the 
fuel cell is proportional to the rate of the reaction 
process. In the outer part of the plate, the proton 
exchange membrane becomes dried because of 
the rising temperature. Additionally, the density of 
the electron flow rate becomes lower over time in 
the fuel cell.19,28 The density of the electron flow is 
higher when the supplied gas is enough. The current 
distribution is also an important factor and it is 
inversely proportional to the density of electron flow 
rate. The rising reactant flow rate creates a uniform 
current flow. Inappropriate thermal energy will 
decrease the performance of the proton exchange 
membrane.12, 23-28

Effect of Temperature on PEMFC 
Though several factors such as operating 
temperature, electrolytes used, humidity, catalyst, 
produced heat etc. have vital effects on the 
performance of Hydrogen Fuel Cell, in this paper, 
we will discuss the effects of temperature elaborately. 
The effects of temperature on different parameters 
are shown in Table 2 and discussed elaborately 
below: 

Performance and Efficiency
Heat generates during the PEMFC operation. For 
better efficiency and consistence output there must 
be a cooling process either by air or fluid to get rid 

of the cell generated heat.10 The proton exchange 
membrane fuel cell shows better performance with 
the rise in temperature and pressure. Because 
the entropy change is small during the rise in 
temperature and pressure. A less chance of 
entropy indicates better and stable performance in 
a fuel cell. As the thermal energy is improved, the 
overall performance like current, current density, 
voltage, electricity production of a proton exchange 
membrane fuel cell improves.24 It has been observed 
in another study that fuel cell performance increased 
when the temperature increased to 1200C. 32,33,37 

Normally it is considered that the efficiency of the 
PEMFC is increased in terms of the increase in 
temperature.22,36-40 A hydrated proton exchange 
membrane normally works in a range of temperatures 
below 1000C and if we include some new elements 
in the PEMFC then the FC will operate in the 
temperature range higher than 1000C.36,37 A new 
technology has been found for high-temperature 
fuel cells with a temperature range from 900C to 
2000C.40,44-46 At this high-temperature range from 
90 to 2000C, the rate of proton exchange through 
the membrane becomes high and that’s why there 
is a rapid rise in reaction mechanism in anode and 
cathode.40-46 The transfer of mass positively rises 
with the rise of the temperature.

Table 2: Effect of Temperature on PEMFC parameters

Parameters Effect on the parameters References

Performance and efficiency Increases with the increase in temperature 22,32,36,37
Humidity Optimum temperature maintains the required humidity 32,36,45-50
Power Production  Increases with the increase in temperature  18,32, 55,56
Voltage Increases with the increase in temperature  47, 58-60
Leakage Current Increases with the increase in temperature  61,62
Catalyst Tolerance Increases with the increase in temperature  26,29,36, 40,66,67
Mass cross-over  Decreases with the increase in temperature  32,44-46
Durability Decreases with the increase in temperature  40,48,71-76

Humidity 
The proton exchange quality of the membrane 
depends on the humid condition of the membrane.47-53 
The presence of water in the membrane maintains 
the optimum humid condition. Adequate water is 
required for the membrane to be hydrated and the 

rest of the water needs to come out of the fuel cell for 
better performance. Otherwise, the extra water will 
create additional complications inside the fuel cell. 
At the same time, the temperature rise is one of the 
reasons for water loss in the membrane.22,32,36  When 
the temperature of hydrogen fuel remains high, the 
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membrane becomes dehydrated. As a result, less 
amount of proton can pass through the anode to the 
cathode side which will reduce the electron flow and 
efficiency of the PEMFC. In high temperature and 
high humidity, membrane crossover of the hydrogen 
gas rises. It is one of the reasons for PEMFC decay. 
After the exchange of protons through the membrane 
with electrochemical reaction, water is produced. 
Excess water production will make the membrane 
wet by the diffusion process.45 Wet proton exchange 
membrane is very essential for proton exchange 
from anode to cathode. The electrochemical reaction 
would rapidly rise with the increase in temperature 
and would produce enough water. This water will 
make the membrane wet and again it will increase 
PEMFC efficiency.S45,53,54

Without optimum humid conditions in the membrane, 
the resistance of the membrane to hydrogen ion will 
rise. As a result, this rise in resistance will increase 
the temperature. To maintain the good condition of 
the fuel cell operation, an optimum humid condition 
should be maintained either by in-vitro or in-vivo 
water maintenance in the fuel cell.47,48 The ion 
exchange is the main parameter to be observed 
during less humid conditions. Humidity controls the 
hydrogen and oxygen flow in both of the electrodes 
in the fuel cell.48,49 Particularly the humidity in the 
cathode side creates a condition for operating a 
fuel cell in lower temperatures. The performance 
and durability of the membrane directly depend on 
the humid condition. If the humidity in the proton 
exchange membrane is up to 100%, it can lead to 
catalyst decay from the surface of the membrane.47-50 
Besides, in less humidity, the polymer electrolyte 
membrane turns into more brittle form and degrades 
faster, particularly the acid group of the membrane 
degrades, and the catalyst is washed away from the 
surface of the membrane.32,36,47-50

The Efficiency of Power Production
In a proton exchange membrane fuel cell, the 
density of power production rises by 16% for the 
operational temperature rise from 500C to 800C. 
The power production efficiency of a PEMFC 
is increased with the increase of operational  
temperature.18,32 The value of dissipated power is 
reduced and the initiated over-potential become 
less due to the rising temperature which results in 
increased power production efficiency.55-56

Voltage
According to the Nernst equation, the temperature 
is proportional to the output voltage.58 Higher 
temperature leads to faster kinetics and as a result, 
the voltage is also increased. This increase in 
voltage surpasses the voltage loss from the negative 
thermodynamic correlation between the open-circuit 
voltage and temperature.58-60 But in a study, the fuel 
cell was found to have worse performance due to 
unfortunate damage or hole in the proton exchange 
membrane at 700C operating temperature.47 In this 
case, the voltage dropped in the fuel cell as the 
hydrogen gas passes through the membrane. So, if 
the voltage does not increase with the temperature 
increase, there might be damage in the proton 
exchange membrane. 

Leakage Current
The membrane of PEMFC is regarded as hydrogen 
impermeable and electrically insulated. But leakage 
current still occurs within the fuel cell. It is often 
supposed to be around 0.01 A.cm-2 in PEM fuel cell 
simulation literature.61 During the electrochemical 
reaction in the fuel cell, hydrogen gas, and electrons 
diffuse through the proton exchange membrane.62 
For the diffusion process of hydrogen gas and 
electrons through the proton exchange membrane, 
a minute amount of current is produced. This 
current is known as leakage current. With the rise 
in temperature, the leakage current also increases. 
If the temperature rises from 500C to 800C then the 
leakage current density change will be 6-12 mA/cm2. 
The value of leakage current density will be constant 
with the constant value of temperature.

Catalyst Tolerance
The decay of the material of the components of the 
PEMFC is a very important factor in the performance 
of the PEMFC. The efficiency of catalyst decay over 
time depends on the hydrogen oxidation reaction, 
oxygen reduction reaction, high potential, and pH 
environment. Platinum catalyst plays a vital role in 
the performance of fuel cells. The oxygen reduction 
reaction in the cathode is a slow reaction process. 
To overcome the slowness, an effective catalyst can 
accelerate the oxygen reaction rate in the cathode 
which will improve the PEMFC efficiency rapidly. 
The energy conversion process in PEMFC is very 
efficient regarding the input hydrogen purity.37 
Otherwise less pure hydrogen will damage fuel 
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cell components and operation. To produce low-
cost hydrogen fuel with required purity is a goal to 
achieve to make fuel cells more feasible to use. If 
the hydrogen is not pure then carbon mono oxide 
will be produced and associates with the surface of 
the catalyst. That's why the reaction hampered in the 
fuel cell.24-26 However, in the HT-PEMFC this carbon 
mono-oxide dissociation in the catalyst surface 
can be solved. At high temperature accelerate the 
reaction kinetic in a fuel cell. In high-temperature 
PEM become dehydrated. 26-29 As a result catalyst 
decay decreases, proton passes through membrane 
rapidly, electrochemical reaction accelerates, 
reaction remains active for a long time. High 
temperature affects the lifetime of the FC. Besides 
leaching of reaction acid should be maintained in HT- 
PEMFC. Water is produced in the chemical reaction 
at the anode side. This water production falls at the 
rise in the operational temperature range from 800C 
to 1200C. Rapid water production in the PEMFC will 
inundate the proton exchange membrane. A proton 
exchange membrane fuel cell has an efficiency of up 
to 60%. 26 The tolerance level of the catalyst to the 
contaminants in the membrane will rise significantly 
with temperature.40,65 When PEMFC operates at a 
temperature below 1000C, CO covers the catalyst 
layer. As a result, the electrochemical reaction 
process becomes slower. The CO accumulation 
in the catalyst surface reduces the 50% lifetime of 
the fuel cell. To ameliorate the bad effect of CO, a 
certain type of catalyst should be selected which 
has no reactive mechanism to this harmful gas.40,67

Mass Cross-Over and Concentration Over-
Potential
Mass cross-over and concentration over-potential 
are also related to the temperature of the PEMFC. 
If the temperature rises, the mass cross-over falls 
and concentration over-potential rises. The current 
density becomes high.32 On the other hand, the 
activation over-potential remains static up to the 
800C. Then towards 1000C, the activation over-
potential rises. It is considered that up to 800C, the 
PEMFC efficiency remains in good condition. In 
anode and cathode, the activation over-potential 
decreases with the rise in temperature over 800C. But 
in 1200C the anode activation over-potential value 
is higher than that was between in the 80 to 1000C 
range but in the cathode, the situation is opposite.44-46

Durability
Despite the immense evolution of the proton 
exchange membrane, the longevity is still a 
concern.76 The durability of the catalyst, electrode 
plate, gas diffusion layer, the gasket is directly 
related to the longevity of the proton exchange 
membrane.40-48 Electrochemical erosion, component 
erosion, and thermal effect are the leading factors for 
the longevity of the proton exchange membrane. 71,76

The proton exchange membrane loses its water 
and becomes dehydrated with the rise of the 
temperature.40-46 As a result, the hydrogen gas 
crossing the dehydrated membrane will reach on 
the cathode side. Hydrogen in the cathode side will 
then damage the bipolar plate, catalyst, and gaskets. 
If it continues to operate at high temperatures, then 
over time the durability of the PEMFC will decrease. 
28 A fluid dynamic model was proposed in research 
with an operating temperature range from 800C to 
1200C and pressure range at 200000Pa. In this 
model, a high-temperature fuel cell showed better 
performance with better current density at 800C 
rather than 1200C. The water production in the anode 
side was found to be better than that of in cathode 
side. A change in temperature from 1200C to 800C 
was found to give smooth water production. But it 
can directly harm the fuel cell and the durability 
of the fuel cell will decrease.69 At low thermal 
conditions around 1000C, there is a minute amount 
of water accumulation in the surface of the proton 
exchange membrane.24 The sulfonate part of the 
Nafion membrane decays at high-temperature range 
around 2000C which will permit the hydrogen gas to 
pass through the proton exchange membrane and 
reaches in cathode area.24,68

Effect of Input Hydrogen Gas Temperature
PEMFC has unique criteria such as low operating 
temperature & pressure, longevity, mobility and 
small size.1-8 The start-stop mechanism and output 
load stability are the major issues of PEMFC. Lack 
of enough input gas supply results in a rise in 
temperature in PEMFC. 44-46 Inadequate input gas 
supply creates a potential pressure in the anode. 
As a result, the temperature of PEMFC rises and 
creates decay in the membrane which makes a decay 
path.24 In vehicle operation, the fuel cell temperature 
range is 800C. But the stability of the PEMFC will be 
affected by this temperature. At changing operating 
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temperatures such as 250C,400C,600C and 800C 
the fuel cell efficiency increased with the increasing 
temperature. The fuel cell efficiency increases when 
the start-stop round was in on mode and the stack 
efficiency decreased when the start-stop round was 
in off mode. But regardless the start-stop round was 
on or off with rising temperature the fuel cell can run 
with better efficiency. 45

Effect of Internally Produced Heat
If the hydrogen and oxygen flow is not enough 
then there will be a rise in temperature in PEMFC. 
As a result, the overall performance of the fuel 
cell will fall.24 Produced heat in the fuel cell during 
chemical reaction affects all the components (anode, 
cathode, gas diffusion layer, gasket, electron 
collector, membrane electrode assembly) and the 
operating condition (temperature, the humidity of the 
membrane, voltage, current) of the PEMFC. 46-50,70-74

Lu et al., in 2016 demonstrated that the Platinum 
palladium-based fuel cell reaction catalyst increases 
performance and output energy due to enhanced ion 
exchange during the reaction phase. If the resistance 
to ion exchange is lower, then the loss would be 
lower and the longevity would improve. Therefore, 
the extra heat production due to the resistance of 
the ion exchange would be lower.73

New Technology for Enduring High Temperature
In the rising market, there is a huge demand 
for polymer electrolyte membrane temperature 
range from 1200C to 1400C. Because the water 
drainage system and heat processing are very 
easy in high-temperature PEMFC.23 A new type of 
non-perfluorosulfonic acid membrane other than 
nafion or perfluorosulfonic acid is a good choice 
for cost-effective and durable in high-temperature 
condition with better performance.23,75 It facilitates 
the use of high temperature.45 By modifying 
different parameters and design constructions, high 
temperature can be used to have greater efficiency.

Conclusion
Hydrogen fuel cell is a promising source of renewable 
energy in upcoming days. But the system is still not 
economically feasible as the cost of construction 
is high, the relatively inexpensive catalyst is yet 
to be discovered, durability is not up to the mark, 

the cost of producing hydrogen gas is high, and 
so on. Fuel cell performance will vary depending 
on architectural design, component design, the 
chemical composition of components, atmospheric 
specifications, the parameters within the fuel cell, 
the best operating condition, the ability to generate 
energy. A continuous performance can be observed 
through a fuel cell test station setup. In this paper, 
we can conclude that temperature has significant 
effects on almost all ambient parameters and design 
components. So, considering all these effects, the 
optimum temperature should be used. As the higher 
temperature has been found to be beneficial in most 
cases, design variations are required to facilitate 
it. We have also discussed the design variations 
that can be useful for using high temperature. This 
review paper can lead to a proper combination and 
specification of the design components and factors 
to develop purpose-specific Hydrogen fuel cells.
Highlights

• Different factors have effects on the 
performance and durability of Hydrogen fuel 
cell.

• The ef fects of  Temperature on the 
performance and durability of PEMFC have 
been discussed.
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