Vibrational spectral study of 2-Chloro-6-methoxy pyridine

B.S. YADAV*, RITU SHARMA and ISRAT ALI

Molecular Spectroscopy and Biophysics Laboratory, D.N. College, Meerut - 250 002 (India)

(Received: March 15, 2007; Accepted: May 02, 2007)

ABSTRACT

The FTIR and Laser Raman spectra of 2-Chloro-6- methoxy pyridine have been recorded in the region 4000-400 cm⁻¹ and 4000-100 cm⁻¹ respectively. The bands observed in the FTIR spectra and Laser Raman spectra are discussed by assuming the compound under C_s point group symmetry. The probable assignments of the above molecule are based on group frequency approach together with the data available for similar molecules.

Key words: FTIR spectra, Laser Raman spectra, 2-Chloro-6-methoxy pyridine.

INTRODUCTION

The spectroscopic study of N-heterocyclic molecules including substituted pyridines have become quite interesting as they are the constituent of DNA and RNA and hence play a central role in the structure and properties of nucleic acids¹⁻³. Infrared and Laser Raman spectra of pyridine and its monosubstituted derivatives have been studied by several investigators but a little work appears on the vibrational spectra of di and trisubstituted pyridines³⁻⁵. The present work has been done to interpret completely the vibrational spectra of 2-chloro-6- methoxy pyridine which has not been reported earlier.

EXPERIMENTAL

Specpure grade chemical 2- chloro-6methoxy pyridine was obtained from M/S Aldrich Chemie, West Germany and used as such. This chemical hereafter, referred as 2,6-CMP. The purity of the said molecule was also confirmed by elemental analysis and melting point determination. The FTIR absorption spectra of 2,6 CMP was recorded on Perkin Elmer spectrophotometer model – 52 in the region 4000-400cm⁻¹ in nujol mull and Laser Raman spectra of the above molecule has been recorded on Spex-Rama Lab spectrophotometer using Argon – Neon Laser Beam of light of wavelength 488nm and power of 200 mw. All the bands are expected to be accurate \pm 7 cm⁻¹.

RESULTS AND DISCUSSION

The structural formula of the molecule 2,6 - CMP is given in figure 1.

The FTIR spectra in nujol mull and Laser Raman spectra of the said molecule are given in figures 2 and 3 respectively. The fundamental vibrational frequencies of the said molecule are given in Table 1. For simplicity and convenience the modes of vibrations of the aromatic compounds are considered as guidelines.

- Vibrational spectra
- Ring vibrations
- C-H vibrations

Fig. -1: Molecular structure of 2, 6 - CMP.

FTIR	Laser Raman	Assignments
_	3146 vw	υ (C-H)
3104vw	-	υ (C-H)
_	3082ms	υ (C-H)
_	3013vw	υ (C-H) Asym (O-CH ₃) Group
2956vw	2951 ms	υ (C-H) Asym (O-CH ₃) Group
_	2905 vw	υ (C-H) Sym (O-CH ₃) Group
_	1641 w	υ Ring
1602s	_	υ Ring
1566s	1568ms	υ Ring
_	1538w	υ Ring
1476s	_	υ (C-N)
1418s	-	υ (C=N)
_	1390w	β (C-H)
1305s	1298ms	β (C-H), υ(C-OCH ₃)
1266w	1265 w	β (C-H) O-CH ₃ Group
_	1238w	β (C-H) O-CH ₃ Group
1149ms	1148ms	β (C-H)
_	1069ms	CH ₃ Wagging
1026 ms	-	CH ₃ Rocking
986w	982s	υ (C-Cl)
879ms	-	γ (C-H)
-	862w	γ (C-H)
-	847w	Trigonal Bending
787ms	-	Trigonal Bending
-	766w	Ring Breathing
-	746 w	C-N-C Bending Vibration
731 vw	-	$\beta(C-OCH_3)$
690 vw	-	γ (C-H)
-	678 ms	β Ring
-	629 w	β Ring
609 vw	605 ms	β Ring
-	522w	β (C-Cl)
-	467ms	γRing
416vw	410 ms	γRing
-	278 w	γ (C-OCH ₃)
-	185 ms	γ (C-Cl)

Table -1: Assignments of the vibrational frequencies in (cm⁻¹) of 2,6-CMP

 υ = Stretching, β = In-plane bending,

 γ = Out-of-plane bending, Sym =Symmetric,

Asym = Asymmetric

w = Weak, vw = Very weak, ms = Medium strong, s = Strong

Fig. - 2: FTIR spectrum of 2,6 - CMP

Fig. - 3: Laser raman spectrum of 2,6 - CMP

Since the molecule 2,6-CMP is a disubstituted pyridine, it has 3 hydrogen atoms left around the ring. Thus the molecule 2, 6 – CMP may have three C –H valence oscillations which usually lie in the region 3150-3000 cm^{-1, 5 - 7}. Thus the two bands observed at 3146, 3082 cm⁻¹ in Raman and one band observed at 3104 cm⁻¹ in IR have been assigned to the C-H ring stretching vibrations of the above molecule. These assignments are also in good agreement with the literature value⁶⁻⁸. Yadav *et al.*⁴ have assigned in-plane bending vibration at

1294 cm⁻¹ in 2- phenyl pyridine and at 1280 cm⁻¹ in 4-phenyl pyridine and out-of-plane bending in the region 750-980 cm⁻¹ in 2 and 4-phenyl pyridine. In view of these the bands observed in IR at 1305 cm⁻¹ and its counterpart in Raman at 1298 cm⁻¹ has been taken to represent C-H in-plane ring bending vibration. One band also observed at 1390 cm⁻¹ having weak intensity also represent C-H in-plane bending vibration. The two bands one in IR at 879 cm⁻¹ and other in Raman at 862 cm⁻¹ have been assigned to out-of-plane bending vibrations. These assignments find support with the literature value⁹⁻¹¹.

C-N and C-C vibrations

In benzene and substituted benzene the frequency of ring breathing mode have been assigned in the region 844-690 cm⁻¹. Yadav et al⁴. have assigned ring breathing mode at 782 cm⁻¹ in 5 -chloro 2.3 -dihydroxy pyridine. In view of this a weak band observed at 766 cm⁻¹ in Laser Raman spectra of the above molecule has been assigned to ring breathing mode of vibration. The C-C and C-N stretching in-plane and out-of-plane bending modes have been assigned in their respective regions⁴-7 which are given in Table 1. The trigonal bending and C-N-C bending vibrations have been assigned at 787 cm⁻¹ and 746 cm⁻¹ in FTIR and Laser Raman spectra respectively. These assignments agree well with the work of other investigators on similar molecules11-12.

C-X vibrations

The C-CI stretching frequencies generally observed near the region 1000 cm⁻¹. Based on this the bands at 986 cm⁻¹ of weak intensity in FTIR and its counterpart at 982 cm⁻¹ of strong intensity in Laser Raman spectra of the above molecule has been taken to represent C-Cl stretching vibration.

The in-plane C-CI bending vibration has been assigned at 522 cm⁻¹ in Laser Raman spectra and the out-of-plane bending vibration has been observed at 185 cm⁻¹ in Laser Raman spectra of this molecule with medium strong intensity. The assignements are in good agreement with the earlier workers⁷⁻¹⁰. The methoxy group present at the 6th position in 2,6-CMP give rise to stretching as well as in-plane and out-of-plane bending vibrations which are observed at 1298, 731and 278 cm⁻¹ for the above compound. The assignments fairly agree with the literature values ⁶⁻⁹.

Group vibrations OCH, group

The methoxy group at 6th position in the ring system gives internal vibrations⁵⁻⁸. Two antisymmetric and one symmetric C-H stretching vibrations have been found in O-CH₃ group which are given in Table 1. CH₃ wagging and rocking are also found at 1069 and 1026 cm⁻¹ in Laser Raman & FTIR spectra respectively of the above molecule. These assignments are in good agreement with the literature values⁹⁻¹².

REFERENCES

- Yadav B.S., Seema, Kumar Vipin and Jetley U.K. Indian J.Pure & Appl. Phys. 35 587 (1997).
- 2. Yadav B.S., Singh Vir, Yadav M.K. and Chaudhary S. *Indian J. Phys.* **35** 305 (1997).
- Yadav B.S., Kumar Vipin, Singh Vir and Semwal B.S. *Indian J. Pure & Appl. Phys.* 37 34 (1999).
- Yadav B.S., Kumar Nitin, Singh M.K. and Yadav M.K. *Indian J. Phys.* 80 (1), 61-65 (2006).
- Krishna kumar V. & Ramasamy R., *Indian J.* of Pure & Appl. Phys. Vol. 41, 258-261, (2003).
- Krishna kumar V. & Ramasamy R., *Indian J.* Pure & Appl Phys, **39**, 829, (2001).

- Ahmad Salik, Sharma S.D., Isaq M. Spectrochimica Acta Part A 52, 1369-1373, (1996).
- Mohan S. & Ilangovan V. Indian J. of Pure & Appl. Phys Vol. 32, 91-95, (1994).
- Kumar Parveen and Sharma S.D. Asian J.of Chem. Vol. 9, No. 2, 288-292, (1997).
- Mohan S. & Murugan R. Indian J of Pure & Appl. Phys. Vol. 30, 283-286, (1992).
- Isaq M., Gupta S.P., Sharma S.D. and Yadav B.S. Oriental J of Chem. Vol. 14, (3) 387-392, (1998).
- Isaq M., Gupta S.P., Sharma S.D. and Yadav B.S. Oriental J of Chem. Vol. 14, (3) 417-422, (1998).