
INTRODUCTION

Group factorizations are very common in
mathematics. Among their uses is the
bicrossproduct construction which is one of the
primary sources of non-commutative and non-
cocommutative Hopf algebras. These bicrossproduct
Hopf algebras have been introduced by Majid10 and
Takeuchi16. Since then, bicrossproduct Hopf
algebras have been extensively studied2-4,6,9.
These algebras have many applications, for example
Majid in10 showed that they can be considered as a
systems combine quantum mechanics with
geometry¹¹.

In 1996, Beggs et al.,5 have computed the
quantum double construction of Drinfeld7 for the
bicrossproduct Hopf algebra associated to the
factorization X = GM, where G and M are subgroups
of the group X, which led to an interesting
generalization of crossed modules to bicrossed
bimodules. In addition, they showed that basis-
preserving selfduality structures for the
bicrossproduct Hopf algebras are in one-to-one
correspondence with factor-reversing group
isomorphisms.
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ABSTRACT

In this paper we generalize the construction of a bicrossproduct Hopf algebra from a
factorization of a finite group X into a subgroup G and a subsemigroup H. In addition, we show that
these bicrossproduct Hopf algebras are self-dual as Hopf algebras whenever they correspond to
factor-reversing automorphisms of X.
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In this paper we show that Hopf algebras
can be constructed by using more general
factorizations of finite groups. More specifically, we
show that the bicrossproduct Hopf algebras can be
associated to a factorization X = GH, where G is a
subgroup of the group X and H is a subsemigroup
of X. In addition, it is shown that basis-preserving
self-duality structures for these bicrossproduct Hopf
algebras are in one-to-one correspondence with
factor-reversing semigroup isomorphisms.

Throughout this paper we assume that all
groups mentioned, unless otherwise stated, are finite
and that all vector spaces are finite dimensional over
a general field k . The conventions and notation are
mainly taken from5. The reader is referred to12-15 for
the basic results of Hopf algebras.

Preliminaries
Let k be a field and G a semigroup with

identity. Denote the k-vector space generated by G
by kG. Defining the multiplication on kG by



kG becomes a ring. The map kG : k kG
given by kG(a) = a1 where 1 is the identity element
of G makes kG a k- algebra. The k-algebra kG is
said to be the semigroup k-algebra of G1.

Let X = GM be a group which factorizes
into two subgroups G and M. Then each group acts
on the other through left and right actions: M×

G  G and 



: M×G M defined by su = (s



u)

(s



u), where u  G and s  M. These actions
obeying the following conditions for all s, t  M and
u, v  G5:

s 
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u) = (st)



u;

s



e = e, s



(uv) = (s



u)((s



u)



v)) ...(1)

Associating to this factorization, we can
define the bicrossproduct Hopf algebra H =kM 



k(G) with basis su where s  M and u  G.
The product, unit, coproduct, counit and antipode
are defined as follows5:

Also, we can define the dual of H which is
again a bicrossproduct Hopf algebra H *=k(M)



kG with basis s u where s  M and u  G.
The product, unit, coproduct, counit and antipode
are defined as follows5

Self-duality of bicrossproducts
Here we study the bicrossproduct Hopf

algebras associated to a factorization of a group
into a subgroup and a semisubgroup with identity

and a left inverse property. This may have some
relevance to the work of Green, Nichols and Taft8

concerning one sided Hopf algebras structures. If it
exists, the left inverse for an element a  H will be
denoted by aL.

Let X = GH be a group which factorizes
into a subgroups G and a semisubgroupwith identity
H. Then H acts on G through the right action 



: H ×

GG and G acts on H through the left action 



:H

× G H. These actions are defined by au = (a



u)

(a



u), where g  G and a  H. It is easy to show
that these actions obeying the following conditions
for all a, b  H and µ , v  G

a



e = a, (a



u)



 = a



(uv);

e



u = e, (ab)



u = (a



(b



u))(b



u)

e 



u = u, a



(b 



 u) = (ab) 



u;

a



 e = e, a 



 (uv) = (a 



 u)((a 



u)



) ...(2)

It can be seen that we can associate to
this factorization a bicrossproduct bialgebra H = kH


 k(G) with basis au where a  H and u  G.

The product, unit, coproduct and counit are defined
as follows:

If H posses a left inverse aL for each a  H,
then H becomes a Hopf algebra and the antipode
will be given by:

Due to these formulas, it can be noted that
H  = kH



k(G) has the smash product algebra
structure by the induced action of H and the smash
coproduct coalgebra structure by the induced
coaction of G.

In the symbol H  = kH



k(G), kH is the
semigroup Hopf algebra of the semigroup H with
identity and left inverse property. A basis of kH is
given by the elements of H, with multiplication given
by the semigroup product in H , and comultiplication
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given by a = aa for a  H. Also, k(G) is the Hopf
algebra of functions on G with basis given by u for
u  G . The product is just multiplication of functions,
and the coproduct is

Moreover, the



par t means that kH

acts on k(G), and the 



part means that k(G) coacts
on kH.

In addition, a dual bicrossproduct bialgebra
H * = k(H) 



kG can be defined with basis au
where aH and uG. The product, unit, coproduct
and counit are defined as follows:

If H posses the left inverse property for
each aH, then H * becomes a Hopf algebra and
the antipode will be given by:

It can be noted that what has been said about H,
can be dually said about H *.

Definition 3.1
Let X be a finite group and X = GH be

factorization of X into two subsemigroups G and H
with identities. A semigroup isomorphism f : XX is
defined to be factor-reversing if (g)H for all g G
and (a)G for all aH. We need the following
lemmas:

Lemma 3.2
Let X = GH be factorization of a group X

into a subgroup G and a subsemigroup H with
identity. Then for the algebra H  = kH



k(G) ,where
k(G) is the algebra of function on G and kH is the
semigroup algebra of H , an algebra homomorphism:
H H * which sends basis elements to basis
elements can be constructed from afactor-reversing
isomorphism of X = GH.

Proof
We Suppose that  is a semigroup

isomorphism and we define a linear map  :
H H * by

...(3)

We want to prove that 

~
f

 is an algebra

homomorphism. As  is a semigroup homomo-
rphism, we should have (b)=(b)() and also
(b) = ((b



) (b



)  = (b



)(b



),
for all b H and G. Thus
(b)() = (b



)(b



)

=((b



)



(b



))((b



 ) 



(b 



 )).

By the uniqueness of factorization, we have
(b) = (b



)



(b



) ...(4)

() = (b 



) C (b



 ) ...(5)

Now to prove that 

~
f

 is an algebra

homomorphism, we show that 

~
f

((au)(bu))

=

~
f

(au)

~
f

(bu) for au buH , a, b H and u
  G. We start with the left hand side as follows:
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We have utilized here the fact that f is an
isomorphism and put u = b  to avoid having a
zero answer. Next we check the effect of f on the
unit, i.e., we want to show that (1H)=1H *.So

~ ~

( )
(

(1 ) ( )H u f e u
u f u

f f e f e u 


 
        ( ) ( *

( (

( ) 1f u f u H
af u f u

a

f e d e e 



 

        

where 

a


 = (u) is an element of H, as

required.
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Now, the question arises "does the same
result hold for the coalgebra". The answer is in
negative as the counit property is not applicable
unless we assume that our semigroup H posses, at
least, the left inverse property as we see in the
following lemma.

Lemma 3.3
Let X = GH be factorization of a group X

into a subgroup G and a subsemigroup with identity
and left inverse property H. Then for the coalgebra
H = kH



k(G) ,where k(G) is the algebra of
function on G and kH is the semigroup algebra of
H, there is a coalgebra homomorphism: H H *
which sends basis elements to basis elements can
be constructed from a factor-reversing isomorphism
of X = GH.

Proof
We suppose that 

~
f

 is a semigroup

isomorphism and we consider the same linear map

~
f

 : HH *defined in the proof of lemma 3.2 by

~

( )( ) (u f a uf a f a u     
...(6)

where aH and uG. To check that 

~
f

satisfies the conditions to be a coalgebra
homomorphism, we start by showing that f(aµ)

= (

~
f



~
f

)(a) as follows:

~

( )( ) ( (u f a uf a f a u       
( )

( ( )) (m n
mn f a u

n f a u f a u 


    


  

On the other hand,

~ ~ ~ ~

( ) ( ) ( ) ( ) (( ) )u x y
xy u

f f a f f a a x  


        

~ ~

( ) (( ) )

( ) (( ) )

( ) ( ) )

( ) ( ) )

( ) ( )

x y
xy u

f a x f a x y
xy u

f a x f a x y
xy u

f a f a x

f a x f a x y

f a x f a xy

 

 

 







   

   

   







  

  



  

 

Putting m = (a x) and n = ((a



x) 



y) yields

mn = (a



x)((a



x) 



y)

= ((a



x)((a



x) 



y))

= (a



(xy)) = (a



u).

We have used the assumption that f is a
semigroup homomorphism. Also, we get

n 



 (a



u) = ((a



x)



y) 



 (a



u)

= ((a



x)-1(a



(xy)))



 (a



u)

= ((a



x)-1(a



u))



(a



u)

= f(a



x)-1 



 (f(a



u)



f(a



u))

= (a



x)-1



(a)

= (a



 x)-1



((a



x)



 (a



x))

= ((a



x)-1(a



x))f(a



x)

= (e)(a



x)

= (a



x),

as required. Next we check the effect of 

~
f

 on the

counit i.e., we want to prove that H*

~
f

(aµ) = H*

(aµ) which we do as follows:

To have a non-zero answer we have put

f(a



u) = e which implies that a



u = e as 

~
f

f is an

isomorphism. Applying aL to both sides gives u = e.

Theorem 3.4
Let X = GH be factorization of a group X

into a subgroup G and a subsemigroup with identity
and left inverse property H. Then for the Hopf algebra
H = kH



k(G), where k(G) is the algebra of
function on G and kH is the semigroup algebra of
H, there is a Hopf algebra isomorphism: HH *
which sends basis elements to basis elements can
be constructed from a factor-reversing isomorphism
of X = GH.

Proof
We Suppose that 

~
f

 is a semigroup

isomorphism and we consider the same linear map

~
f

: HH * defined in the proof of lemma 3.2 by

Al-Shomrani, Mat. Sci. Res. India.,  Vol. 4(2), 305-312 (2007)308



...(7)

where aH and uG. The conditions for  to be an
algebra and a coalgebra isomorphism follow from
lemmas 3.2 and 3.3. To prove that ef is a Hopf
algebra isomorphism, we need to check the antipode

property and the inevitability of 

~
f

. First, we need

the following calculations:

(au)L = ((a



u)(a



u))L

uLaL = u-1aL = (a



u)L(a



u)L = (a



u)L(a



u)-1

= ((a



u)L



(a



u)-1)((a



u)L 



(a



u)-1).

By the uniqueness of factorization, we get

uL = u-1 = (a



u)L 



(a



u)-1 and

aL = (a



u)L



(a



u)-1) ...(8)

Due to the fact that f is a semigroup
isomorphism, we get

f(u-1) = (uL) = ((u))L = ((a



u)L



(a



u)-1) ...(9)

f(aL) = ((a))L = ((a))-1 = ((a


u)L


(a


u)-1) ...(10)

Now to show that the antipode S is

preserved under 

~
f

, i.e., 

~
f

S (au) = S 

~
f

(au), we

do the following

On the other hand,

as required. Finally, to see that

~
f

 : H *H is invertible,

we define 

~
f

-1 : H *H by

         ...(11)

and show that : 

~~
1ff 

(au) =

~
f

-1

~
f

(au) = id(au)

where id is the identity map, as follows

The third equality is due to the identities
(a)= (a



u)



(a



u) and (u) = (a



u)



(a



u) with the fact that f is an isomorphism.
Also we have

as required. Therefore,  is a Hopf algebra
isomorphism.

Following theorem reveals that the
converse of Theorem 3.4 is also true.

Theorem 3.5
Let X = GH be factorization of a group X

into a subgroup G and a subsemigroup with identity
and left inverse property H. Then the factor-reversing
isomorphisms of X = GH give rise to Hopf algebra
self-duality pairings <,> : H Hk on the Hopf algebra
H = kH



k(G) where k(G) is the Hopf algebra of
function on G and kH is the semigroup Hopf algebra
of H. The corresponding pairing is given by

Proof
Assume that 

~
f

-1 is a Hopf algebra

isomorphism which sends basis elements to basis
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elements of our two Hopf algebras, and we want to
prove that we can induce a group isomorphism -1

from -1. We start with functions h : H × GH and g
: H × GG given by

      ...(12)

As  is an algebra isomorphism,
it preserves the unit and the product. Starting with
the unit, we get

...(13)

but, since 

~
f

 is an algebra isomorphism we have

          ...(14)

for some sH. Comparing equations (13) and (14)
gives

...(15)

Now, for the product we have

On the other hand,

...(17)

To have non-zero answer we should have
u = b



 and

         ...(18)

Equations (16)and (17) imply that for all a,
bH and u, v  G, the following equalities are
satisfied:

         ...(19)

...(20)

Note that if we put  = e in (19) and
substitute u = b 



 v, we get

...(21)

Next, as  

~
f

 is a coalgebra isomorphism,

it preserves the counit and the coproduct. So we
start with the counit as follows

...(22)

but as 

~
f

 is a coalgebra isomorphism, we have

         ...(23)

Combining (22) and (23)and putting u = e,
to have a non-zero solution, imply

...(24)

Now we calculate the coproduct under f to have

...(25)

On the other hand, since

~
f

 is a colagebra

isomorphism, we have

...(26)

From equations (25) and (26), we get

Putting a = e gives

...(27)
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We also have, from the coproduct formula,
that n



g(a, u) = g(a, x) where n = h(a



x, y) and
xy = u. Putting x = e gives

or

    ...(28)

Since we have xy = u, putting x = e gives
y = u. Thus equation (28) can be rewritten as

       ...(29)

From (18) with v = bL 



u and b = e we get

      ...(30)

Combining equations (29) and (30) gives

( , ) ( , )  ( ( , )  ( , ))( ( , )  ( , ))  ( , ) ( , )h a u g a u h a u g a u h a u g a u g a e h e u  

...(31)

Putting a = e in (20) yields

Knowing that u = b v implies

           ...(32)

Also, from the coproduct formula, we get
g(a



x, y) = g(a, u) with u = xy, i.e., g(a



x,y) =
g(a, xy). Putting y = e gives

combining equations (32) and (31) gives

...(33)

Equations (15), (24), (21), (27), and (33)
provide the needed conditions ensuring that the map
-1 : XX defined by

is a group homomorphism. It can be noted that our
Hopf algebra map -1 is certainly that one obtained

by 

~
f

-1, which is well defied due to G H = {e}. Since

-1 is a Hopf algebra isomorphism, it is invertible.
So if we put

it can be easily shown that  is obtained by the group
isomorphism  by using a similar technique.
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