
INTRODUCTION

The most famous models used for deriving
the interaction potential are the two–center shell
model1-3, the energy density formalism4-7, the
proximity method8 and the double folding model9.
Recently, the double folding model was developed
in two ways .The first is the calculation of its
exchange part using finite range NN force. This
development produces some computational
difficulties if the non diagonal densities, appearing
in this part, were not approximated using the density
matrix expansion method of Negele and Vautherin10.
The other development is the use of realistic
effective NN force which is usually density
dependent11-16. Again density dependence of NN
force produces difficulties in numerical calculations.
To overcome this difficulty the nucleon–nucleon
separation distance in the density dependent NN
force is considered when calculating the direct HI
potential part and is neglected for the exchange
part. This approximation in considering the density
dependence of NN interaction needs to be tested.

The Generalized Double Folding Model
The double-folding model17-18 proved to be

quite successful in obtaining the correct values of
the real part of the optical model potential needed
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to fit elastic scattering data. In this model the real
potential Un(R) is the sum of the direct part UD(R)
and the exchange part Uex(R). Earlier studies led to
the calculation of the real potential on the
assumption that the exchange part of the nucleon-
nucleon interaction is a zero range19-20. Such
approximation produces correct ion-ion potential in
the tail region only.

The inner and surface regions can not be
calculated with good accuracy using δ -force
assumption. However, it is well established now that
in certain cases of nuclear scattering observed
first in α-particle21 and later for other light HI
systems22-24, where the data are sensitive to the HI
optical potential over a wider radial domain, the
simple double folding model17-18 failed to give a good
description to the data. Therefore, some further
developments of the folding model have been made
to obtain a more realistic shape of the folding
potential. One of these approaches is to impose on
the widely used M3Y-NN interaction25 explicit density
dependence, the DDM3Y1 interaction26. Another is
to treat correctly the simple Knock out effect arising
from the Pauli principle. In the later approach the
exchange part of the real HI optical potential is
derived from the first principle instead of using a
zero-range pseudo potential27-31 adopted in the
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calculation with M3Y and DDM3Y1 interactions 5,26,32.
In ref. 11-16,33 a simple microscopic approach has
been developed based on generalization of the
double folding and the density matrix34-35. In the
framework of this model, the real part of the HI
optical potential at a separation distance R between
the centers of two ions is obtained by:

...(1)

where  i and  j  refer to the single-
particle wave functions of nucleons in the two
colliding nuclei A1 and  A2  , respectively; VD and  VEx

are  the direct and exchange parts of the effective
NN interaction.

In this work we calculate the full ion-ion
potential, Un(R) =UD(R)+Uex(R) , for α–α nuclear
pairs in the frame work of the generalized
double folding model14,25 using the effective
BDM3Y14-16,25,36-37 nucleon-nucleon force. This work
is show the accuracy of neglecting the S-
dependence in the density-dependent NN
interaction on both the direct and exchange parts
of α–α interaction potential.

Calculation of The Exchange And Direct HI
Potential Using Density Dependent NN Forces

In general, the exchange part of the real
heavy ion potential must be non-local35. Since the
exact treatment of the non-local exchange term is
too complicated and needs a lot of numerical
calculations, one usually obtains the equivalent local
potential by representing the relative-motion wave
function of the two interacting nucleons as plane
wave35. Under such an assumption, the exchange
part of the HI potential11-18 is represented by,

...(2)

By introducing the one –body density
matrix11-16, one can explicitly write equation (2) as:

...(3)

where (R)k
r

 is the relative –motion
momentum given by [11-16]

...(4)

where M and Ec.m are the reduced mass,
 and relative energy in the center of

mass system and m is the nucleon mass. Here Un(R)
and Vc(R) are total nuclear potential (Un(R) = UD(R)+
Uex(R)), and coulomb potential, respectively. For
density dependent NN force equitation (3) can be
written as,

   ...(5)

where  

)s,R(Gex rr

 is given by [ 12,38]

...(6)

where density matrix expansion was used
to simplify the non-diagonal density of the target
nucleus. In most calculations [11-16] the s-
dependence in the function F is neglected. In this
case the direct and exchange parts of HI potential
are not computed in consistent way regarding to
the variables of density dependence in NN force.
The function F has the following expression for
BDM3Yn (n=1,2,3) type of forces

         ...(7)

β have the values =1,2 and 3. The projectile
non-diagonal density matrix can be expanded using
DME39 or it can be calculated exactly using oscillator
model if the projectile is double closed shell light
nucleus (as O16 and He4 )[34]. If one neglects the s-
dependence in ρ appearing in the function F, it
becomes

...(8)
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In general 

exG

 depends on both the

magnitude and direction of  

exU ( )R

. In this case, it is

very difficult to calculate . So, we should use
approximate methods to take into account the s-
dependence in density dependent part of NN force.
We use the approximations [40-42 respectively],

...(9)

        ,      ...(10)

and

...(11)

Taking 

R
r

 in Z-direction and integrating

over the variable 

yφ

, to get,

...(12)

where 

exG (R,s)

 is given by [16,38]

...(13)

where . Since the nucleon

relative momentum depends on the total real
potential (equation (5)), the calculation of Uex need
UD  as input.

The direct part of α-α potential is given
by,

 ...(14)

where

This shape of density dependence is used

usually in the calculation of the direct part of the HI
-potential, where the ρ-dependence of the NN
potential is evaluated at the two positions of the
interacting nucleons. This procedure is not
consisting with that used in calculating the exchange
part of the potential. For this part the density in the
NN exchange force is evaluated at the mid point
separating the two nucleons. This means 

Tp ρρ +

in the NN force is taken as:

      ...(15)

The aim of the present part is to estimate
the effect of the difference between the two
approaches on the direct α-α potential42 .The
method of calculating the direct part using NN force
depends on the density given by equation (14) is
well known. It depends on taking the Fourier
transform of the NN potential which depends on s.
This reduces the six-dimensional integral of HI direct
potential to integration over one-dimensional
integrals. On the other hand equation (15) for the
density dependence produces difficulties in
calculating, the direct part of HI potential .In this
case,

...(16)

This can be simplified by changing the
integration variables to 

 r and r insted  r and s 21

rrrr

to get,

...(17)

Equation (17) can be calculated when one
assumes similar target and projectile nuclei with
Gaussian shapes for densities. Taking Gaussian
forms for the density distributions of both target and
projectile

...(18)

...(19)
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Substituting equations (18) and (19) into
equation (17) and using the spherical harmonics
basis then integrating over the solid angle of

 r of angle- and s
rr ϕ

For similar projectile and target nuclei
( ), the last expression is
simplified to

...(20)

Where 

This expression can be easily calculated
numerically.

RESULTS AND DISCUSSION

For exchange part
Since the exact treatment of s-

dependence in calculating nucleus-nucleus is too
difficult. We use the approximations in equations
(9-11). For α-particle,

...(21)

where 

  
b

1
α =

and b is the oscillator parameter and it
has the value b= (1.33) fm.

The effect of taking s-dependence in
density appearing in NN force is to produce more
attractive α-α interaction potential at small
separation distances. The tables show that the error
in neglicting s-dependence affects strongly both the
values of U ex and Utot .

Table (1) contains the results for the
separation distance variation of the α-α interacting
pair calculated using BDM3Yn (n=1,2,3)- Reid force.
Table (2) is the same as Table (1) expect Paris
version of NN force was used. Part (a), (b) and (c)
denote calculations using BDM3Yn with n=1,2 and
3 respectively. Both the tables were calculated for

projectile energy per nucleon EL/AP= 5.2 MeV/N.
The first column of each table shows the value of
the nucleus-nucleus separation distance (R), the
second column shows both Uex and UD+Uex  (
denoted by Utot) . The second column was calculated
using harmonic oscillator wave function to construct
the diagonal and non diagonal densities. The third,
forth and fiftieth column are our calculations by using
the three approximations. The error on the tables
are calculated as

Tables (1) and (2) show the results of α-α
calculated using a value b=1.33. The tables show
that the effect of neglecting s-dependence increases
as the NN force becomes corresponding to higher
value of incompressibility coefficient. This effect is
about 30%(23%) in U ex (Utot) for the force BDM3Y2-
Reid type while it is less than 7% for BDM3Y1-Ried.
It decreases as the α–α separation distance
increases. For BDM3Y3 type of force which
corresponds to large value of compressibility
coefficient, the corresponding error is too large at
separation distance R=0, as Tables (1c) and (2c)
indicate .This error becomes reasonable as the
separation distance between the two α particles
increases. The huge error obtained is due to the
small radius of α–particle (about 1.58 fm.) and its
large central density. Since the force BDM3Y3

corresponds to nuclear matter saturation curve in
which   

A

E
 varies strongly  when ρ becomes greater

than the saturation density )fm 0.17(ρ 3

0

−≅  ,we expect
large change in potential when the density changes
slightly .In other words the force BDM3Y3 is too
sensitive to the value of ρ when the latter has value
more than    0.17 fm-3 .  In order to decrease this
error, á –particle is artifficially made less localised.
For this purpose we increased 

  r 2

1
2

by about 13%
to  becomes (1.83 fm.) which corresponds to b=1.5
fm. Tables (3a) and (3b) are the same as (1c) and
(2c) respectively except they are calculated using
b=1.5fm. These tables show that when the α–
particle becomes less localised, the error becomes
reasonable.

For direct part
In our study of the effect of local density
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Table 4(a): Results of the direct part of a-a potential for BDM3Y1-Reid NN force using
oscillator model densities with b=1.33 fm for the density of a particle. Vs(R) is

calculated using  

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ += s

2

1
-rρs

2

1
rρρ 2T1p

rrrr

 and V(R) calculated using ( ) ( )2T1p rρrρρ 
rr

+=

t = 4 fm-1 t=2.5 fm-1 Full range

R V( R) Vs(R) Error V( R) Vs(R) Error V( R) Vs(R) Error

0 386.17 375.7 -2.79 -384.3 -364.3 -5.48 1.87 11.37 83.52
1 318.42 314.03 -1.4 -318.8 -309.8 -2.9 -0.35 4.24 108.32
2 169.06 170.82 1.03 -174.7 -178 1.84 -5.68 -7.19 21.06
3 53.03 54.41 2.54 -59.57 -62.91 5.31 -6.54 -8.5 23.06
4 9.47 9.75 2.87 -12.51 -13.46 7.01 -3.04 -3.7 17.91
5 0.97 1 2.74 -1.7 -1.85 7.83 -0.73 -0.85 13.86
6 0.06 0.07 15.83 -0.17 -0.21 21.36 -0.11 -0.14 24.19

Table 4(b): Is the same as Table (4a) but using density dependent BDM3Y2 force

t = 4 fm-1 t=2.5 fm-1 Full range

R V( R) Vs(R) Error V( R) Vs(R) Error V( R) Vs(R) Error

0 241.05 215.09 -12.07 -256 -208.6 -22.73 -14.95 6.51 329.69
1 237.37 229.01 -3.65 -242.8 -225.9 -7.49 -5.48 3.09 277.22
2 155.09 159.07 2.5 -158.3 -165.8 4.53 -3.17 -6.7 52.69
3 51.51 53.13 3.05 -57.26 -61.43 6.79 -5.75 -8.3 30.75
4 9.01 9.19 2.05 -11.94 -12.68 5.89 -2.93 -3.49 16.02
5 0.9 0.91 1.36 -1.59 -1.68 4.94 -0.7 -0.77 9.17
6 0.05 0.06 15.59 -0.15 -0.19 19.04 -0.1 -0.13 20.81

Table 4(c): Is the same as Table (4a) but using density dependent  BDM3Y3 force

t = 4 fm-1 t=2.5 fm-1 Full range

R V( R) Vs(R) Error V( R) Vs(R) Error V( R) Vs(R) Error

0 -66.31 -134 50.53 10.46 129.97 91.95 -55.84 -4.06 -1277
1 79.49 62.76 -26.65 -95.86 -61.92 -54.82 -16.37 0.85 2032.5
2 133.66 142.38 6.13 -131.7 -148.4 11.25 1.97 -5.99 132.91
3 50.13 52.18 3.94 -54.59 -60.34 9.52 -4.46 -8.15 45.28
4 8.74 8.9 1.74 -11.53 -12.27 6.04 -2.79 -3.38 17.37
5 0.86 0.87 0.96 -1.53 -1.6 4.31 -0.67 -0.73 8.28
6 0.05 0.06 15.62 -0.15 -0.18 18.65 -0.1 -0.12 20.2

dependence on the HI potential we consider 

α-α

interacting potential. The small mass number of α -
particle produces large changes in the density
distribution along the separation distance between
the two centers of the interacting particles. This
change in the density from point to point makes the

effect of s-dependence in the density dependent
part of NN force appears strongly for this system.
For heavy nuclei, the value of the density distribution
is nearly constant over a large distance measured
from the center of the nucleus and the effect of s-
dependence is small. To make this point more clearly



20 Ismail et al., Mat. Sci. Res. India.,  Vol. 7(1), 11-24 (2010)

Table 5(a): Is the same as Table (4a) but for M3Y Paris

t = 4 fm-1 t=2.5 fm-1 Full range

R V( R) Vs(R) Error V( R) Vs(R) Error V( R) Vs(R) Error

0 465.36 448.28 -3.81 -401.7 -373.8 -7.49 63.61 74.53 14.65
1 393.3 386.15 -1.85 -340.1 -327.5 -3.84 53.2 58.63 9.27
2 218.96 221.83 1.3 -194.2 -198.8 2.31 24.8 23.08 -7.45
3 71.39 73.64 3.06 -68.52 -73.21 6.4 2.87 0.43 -561.6
4 13.06 13.52 3.39 -14.71 -16.03 8.26 -1.65 -2.51 34.42
5 1.36 1.41 3.15 -2.03 -2.23 9.08 -0.67 -0.82 19.18
6 0.09 0.1 15.72 -0.2 -0.26 22.04 -0.11 -0.16 26.15

Table 5(b): Is the same as Table (4b) but using density dependent BDM3Y2 force

t = 4 fm-1 t=2.5 fm-1 Full range

R V( R) Vs(R) Error V( R) Vs(R) Error V( R) Vs(R) Error

0 228.74 186.41 -22.71 -221.9 -155.4 -42.77 6.85 30.99 77.91
1 261.16 247.52 -5.51 -233.7 -209.9 -11.3 27.49 37.58 26.87
2 196.19 202.68 3.2 -171.1 -181.6 5.8 25.12 21.09 -19.14
3 68.91 71.55 3.69 -65.28 -71.13 8.23 3.63 0.42 -762
4 12.3 12.61 2.44 -13.9 -14.95 7.01 -1.6 -2.35 31.59
5 1.23 1.25 1.57 -1.87 -1.99 5.81 -0.64 -0.73 13.02
6 0.07 0.09 15.42 -0.18 -0.23 19.39 -0.11 -0.14 21.97

Table 5(c): Is the same as Table (4c) but using density dependent BDM3Y3 force

t = 4 fm-1 t=2.5 fm-1 Full range

R V( R) Vs(R) Error V( R) Vs(R) Error V( R) Vs(R) Error

0 -272.4 -382.8 28.84 151.64 319.18 52.49 -120.8 -63.65 -89.75
1 3.74 -23.54 115.88 -27.62 19.96 238.35 -23.88 -3.57 -568.2
2 161.24 175.46 8.11 -133.8 -157.2 14.88 27.43 18.26 -50.26
3 66.66 70.01 4.78 -61.54 -69.6 11.57 5.12 0.41 -1142
4 11.87 12.12 2.09 -13.34 -14.38 7.23 -1.47 -2.25 34.91
5 1.17 1.19 1.1 -1.79 -1.88 5.1 -0.61 -0.7 11.93
6 0.07 0.08 15.45 -0.17 -0.21 18.94 -0.1 -0.13 21.2

we note that the density dependent contribution of
the NN force contains the sum (

21 ρρ +

). This term
is calculated usually by assuming that the value of
(

21 ρρ +

) corresponds to the values of densities at
the positions of the interacting nucleons
(

)(rρ)(rρ 2211 +

). Another way is to evaluate the
sum of the two densities at a point midway between
the interacting nucleons so that it is expressed as

the sum 

⎟
⎠
⎞

⎜
⎝
⎛ −++ )s

2

1
r(ρ)s

2

1
r(ρ 2211

rrrr

 .If the interacting nuclei
have large mass numbers the two approaches
produce almost  the same value of the density and
the effect of s-dependence becomes larger. For
strong overlap between light nuclei there is a large
chance that the total density ⎟

⎠
⎞

⎜
⎝
⎛ −++ )s

2

1
r(ρ)s

2

1
r(ρ 2T1P

rrrr

becomes larger than the same quantity after
ignoring the s-dependence in the brackets of
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Fig. 1: Coordinates used in the exchange part of the nucleus-nucleus  interaction

Fig. 2: Coordinates used in the direct part of the NN interaction

Fig. 3(a): Relation between s and v(s) for M3Y Reid using density dependent  BDM3Yn(n=1,2,3)
forces  at constant value of the density σσσσσ=2 σσσσσ0 fm-3
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Fig. 3(b) Is the same as  Fig.(3a) but at constant σσσσσ= σσσσσ0 fm-3

Fig. 3(c) Is the same as  Fig.(3a) but at constant σσσσσ= 0.5ñ0 fm-3

Fig. 4 (a) Is the same as  Fig.(3a) but for M3Y Paris
Fig. 4(b) Is the same as  Fig.(3b) but for M3Y Paris
Fig. 4(c) Is the same as  Fig.(3c) but for M3Y Paris
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densities. Since the NN interaction is of the form,
)αρ-cv(s)(1ρ)v(s, β= , the appearance of s in  ρ

produces  a NN interaction potential value small
compared to the case when s-dependence is
ignored. So, we expect that the HI potential
calculated, for small R-values, using the form

( ))r(ρ)r(ρ 2T1P

rr
+

 in NN force is enhanced compared
to that calculated by including 

s
r

 in the total density.
This appears clearly for the NN force ranges 0.25
and 0.4 fm presented on tables (4) and (5) where
the 

α-α

 potential V(R) and     Vs(R) are calculated
receptively using the expressions 

( ))r(ρ)r(ρ 2T1P

rr
+

and
⎟
⎠
⎞

⎜
⎝
⎛ −++ )s

2

1
r(ρ)s

2

1
r(ρ 2T1P

rrrr
 in the NN force density

dependent term. Table (4) shows the  potential
calculated, at different separation distances R, using
the BDM3Yn(n=1,2,3) -Reid NN forces .The table
contains the contributions of V(R)  and Vs(R)
resulting from one Yukawa term with ranges 0.25
and 0.4 fm. and the same quantities calculated using
NN force which contains the two ranges. Table (5)
is the same as table (4) except it is for Paris type of
force. The tables show that for one Yukawa  is
greater than, in most cases, for small R values. The
error in neglecting the s-dependence increases as
the range of NN force increases. This is reasonable
for all separation distances between the two
interacting nuclei. For, calculated using one Yukawa
term in  becomes smaller than .This is because as
the separation distance between the two nuclei
increases, the sum   has large chance to be greater
than   during the integration process on the volume
elements. This behavior is clear on tables (4) and
(5), for the two separate Yukawa ranges 0.25 and
0.4 fm.  When the two Yukawa terms are combined
together to form M3Y-force, V(R) and Vs(R)
becomes different in behavior than  the  case of
single Yukawa term. For, V(R) is less repulsive or
more attractive compared to V(R, s) .In the surface
and tail regions V(R) becomes less attractive or
more repulsive than Vs(R).

For Reid type of NN force, the magnitude
of the percentage error is too large in the inner
region while it is smaller in the surface and tail
regions. For Paris force the situation is different,

the error in the total potential is too large at
R=3fm.This large value of error is accompanied by
small error values for the two Yukawa ranges 0.25
and 0.4 fm. This can be interpreted if we remember
that the direct part of HI potential calculated using
Paris NN force is repulsive at small R values then it
passes through zero and becomes attractive. For
the distance R=3 fm. the value of potential is too
small and any small change between V(R) and Vs(R)
produces large value of error. The difference
between V(R) and Vs(R) together with the difference
in HI potential due to change of NN force can be
understood from Figs.(3) and (4) .

Fig.(3) shows the variation of the direct
part of  Reid NN forces with the distance between
the two interacting nucleons calculated at three
different values of density. These values are , and
where    is the - particle density at the center of the
nucleus. Fig.(4) is the same as Fig.(3) except it is
for Paris interaction .It is noted that strong variation
of NN force with internucleon distance produces
large difference between V(R ) and Vs(R) .This is
clear on table (4) for BDMN3Yn(n=1 ,2,3)  forces at
where Fig.(3) shows rapid variation of  v(s, ) with
the distance s for BDM3Y3  and slow variation for
BDM3Y1 .This interprets the large error in neglecting
the s-dependence   produced at R<2 fm. for BDM3Y3

Reid force. In the surface and tail regions() the  error
produced by neglecting s-dependence is less than
50% because the shape of NN forces at  and   are
almost similar and does not vary strongly with s.
For Paris type of NN force shown in Fig.(4) , the
direct part of BDM3Y3 force is strongly attractive
for  s < 1 fm. then it becomes repulsive. This
produces highly attractive HI potential in the inner
region for range 0.25 fm. and repulsive potential for
range 0.4 fm. The strong variation of BDM3Y3 for
small s-values Fig(4a) produces large error between
V(R ) and V (R ,s) in the inner region . As the
distance R increases Fig.(4b) and (4c) show that
v(s, ) becomes highly  repulsive at small s-values
and weakly attractive for .This produces weakly
attractive total  potential in the tail region table(5).
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