
INTRODUCTION

In recent years, a number of works of the
symmetry methods are found to be very efficient in
applications to differential equations in Physics and
Engineering. A subject of a special interest is a study
of invariance properties of the equations with
respect to local Lie groups point transformations of
dependent and independent variables. The
importance of the conservation laws lies in the fact
that there are situations where numerical schemes
have been devised keeping in view the conservation
form of the DEs. Also, the conservation law can be
used for serving a priori estimates and to obtain
integrals of motion, where for certain types of
solutions, the conserved density, when integrated,
provides us with a constant of motion of the system.
Actually, finding the conservation laws of a system
is often the first step towards finding its solution.
Rund1 and Logan2 have studied the invariance of
fundamental functional integral and deduced the first
integrals or conservation law for the corresponding
system of DEs. The nonlinear (3+1) Schrödinger
equation [3, 4] is described by nonlinear couple
partial differential equations. It is well know that a
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part of one parameter symmetry groups of these
equations turns out to be their variational
symmetries. According to Noether theorem [5, 6]
such as invariance of the elementary action is a
necessary and sufficient condition of the existence
of conservation laws for the Schrödinger equation.
Let us consider Schrödinger equation with nonlinear
term:

...(1)

Group Analysis
Equations (1) have some applications in

quantum field theory, plasma physics and
Engineering [3]. To simplify equation (1), set q = u
+ iv then, eq. (1) is divided into couple of equations
as follows:

...(2)

...(3)
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In order to find invariance transformations,
we look for infinitesimal Lie point transformations
of the form:

...(3)

which (2-i, 2-ii) system.

Following the widely used methods in the
classical monographs. Concerning these arguments

[4-12] we find the coordinates 

by solving over the determined linear PDE system,
usually called the determining system which is
obtained by requiring, the invariance of the system
(2-i,2-ii) with respect to (3). (1)(2),,,,,......

There are many software packages which
aid researchers in obtaining the determining system.

But solving it with arbitrary functions requires
analysis. We omit the determining system from
which we are able to obtain the following results in
the form of the coordinates

...(4)

and

where, λ1, λ2, λ3 and λ4 arbitrary constants and

are arbitrary functions. Let

the function ) S (t, x, y, z,) satisfies the equation

Then we have the following cases:

Case 1 When and then the

infinitesimal take the form

 

and ) S (t, x, y, z,)  satisfies the equation:

By applying the invariance surface condition, we
obtain
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Where λ1, λ2, L1, L2 are constants and F, H, µ are
functions to be determined by substituting ( 4 ) into
the system (2-i,2-ii) ,that is ,by solving the following
reduced system

...(6)
In order to solve system (6), we change the variables

Consequently, the system (6) takes the form:

...(7)

from (7), we have

where,,TRN are constants.

Case 2
When  then the
infinitesimal takes the form

...(8)

The invariance surface condition may be
solved to yield the functional form:

This leads to a reduction of the system (2)
in the following form

...(10)
and

This leads to a reduction of the system (2) in the
following form

We make use of dilation group and after
some manipulations on the system (10) we have
the equivalent system:

...(10)

Where 

using again dilation group on the system (11) one
gets

where
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Consequently, system (12) has the solution

when  ,ABare constants.

Case 3
In this case the infinitesimal takes the form

Applying the rules as before (such as case
1, 2), we get:

where

and

...(13)
Hence ,

where,

Using the transformation 
and system (13) in (2), we obtain,

...(14)

After some calculations on (14), we have the solution
in the form:

provided that 

where,  are constants,
and

Case 4 When  and 

are constant, we get

...(15)
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and

From (15), the invariance surface condition leads
to:

and

where 

using (16) and changing the variables

then (2) can be written as the follows

and

System (16) has the solution

In this case µ(θ) is an arbitrary function.

variational principle
In order to study variational principle for

our problem,

...(18)

The system (18) satisfied the consistency
conditions for the existence of functional integral.
Consequently, a functional integral can be written
by using the formula given by Tonti [8, 9] as: ),(vuJ
Since

or

since

...(19)

with L being the Lagrangian function, we obtain

for which the Euler-Lagrange equation is

Consequently we have

Hence,

This leads to

Moreover as,
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we obtain

In order to prove the invariance of the

fundamental functional integral  where L is

the Lagrangian function and Ω represents the
domain of integration to be invariant under the one-

parameter group of transformations (3), we can use
the following theorem:

Theorem 1 [ 2]
If the fundamental functional integral

defined by (19) is invariant under the ƒ{rparameter
family of transformation (3), then the Lagrangian L
and its derivatives satisfy the ƒ{ridentities:

for

where

and

Then, Lagrangian and its derivatives must
satisfy the condition: L
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On Substituting for L and its derivatives in equation
(21), we get a polynomial in

 etc Collecting it in

descending order of various powers of

a n d

equating to zero the different powers of

w e

obtain a system of first order PDEs. On solving this
system, we get the following expressions for

...(22)

where and 4care arbitrary constants,

but arbitrary functions of t[12-
19].

By using the following theorem

Theorem 2
(Noether‘s Identity)[5,10] Under the

hypothesis of theorem 1, the following
ƒ{rconservation laws hold true

where

Consequently

thus , we have

where,

Hence
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CONCLUSION

This paper is concerned with finding
potentials that admit Lie point symmetries for the
nonlinear (3+1) Schrödinger equation, i.e., we give

a classification of potentials admitting point
symmetries. Finally, we apply Noether’s theorem to
show which of this point symmetries are variational
and we obtain the corresponding conservation laws
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