
INTRODUCTION

The concept of the little group1 has been
introduced to construct states that transform
properly under an arbitrary Lorentz transformation.
Relativistic particles have their internal space-time
symmetries or degrees of freedom. These
symmetries for massive and massless particles can
be correlated introducing concept of little group. Little
group, in fact, is a subgroup of the Lorentz group.
For the particles, with non-zero rest mass, the little
group is three-dimensional rotation group O(3) . For
massless particles the little group is Euclidian motion
group ISO (2). Euclidian motion group  is a semi-
direct product of  and - the group of translations in
the 2-dimensional plane. Both the rotational group
and  determine the classification of particles on the
basis of their spin quantum numbers. Two cases of
physical interest namely massive particle case and
massless particle case can be distinguished
according to the non-zero and zero eigenvalues of
the Casimir operator respectively. For each
eigenvalue one can choose a standard four-
momentum2. A little group element leaves this four-
momentum invariant. Standard four-momentum can
be chosen conveniently to suit the concerned case.
In this way the little group structure can be
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determined explicitly for massive and massless
particles. However one can obtain the little group
as a particular limit of the three-dimensional rotation
group  by Inonu-Wigner group contraction3. Aim of
our paper is to present a simple line of action that
can be followed to get exactly the same result which
is obtained through Inonu-Wigner group contraction
technique. We here, try to be more specific rather
than being explicit to our problem.

Little group analysis
Space-time translations and Lorentz

transformations are symmetries of Minkowski
spacetime. Collectively they are parts of more
general Poincare symmetry.

Space-time translations are generated by
the energy-momentum four vector Pµ, and the
Lorentz transformations are generated by the
angular-momentum three-vector J and boost three-
vector B. We can express them as [2]

...(1)

...(2)
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ABSTRACT

Starting from massive particle case, we have obtained expression for the generator of little
group for massless particle. It has also been shown that the non-compact generators, which appear in
case of massless particles, can be carefully avoided in our case. Effective use of the Poincar  algebra
has been made to get the required result. Calculation has been done in a straightforward and simple
manner.
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...(3)

Here Pµ and  Jµv are Hermitian operators
PµP

µ. Greek indices  and  run over the four space-
time coordinate labels 1,2,3, and 0.

We mention two commutation relations
among various components of these vectors as

...(4)

and

...(5)

Where i, j, and k run over the values 1, 2,
and 3, and εijk is totally antisymmetric tensor with
ε123 = +1.

For a massive particle,  the little group is
the three-dimensional rotation group.
Representations of the inhomogeneous Lorentz
group can be derived from the representations of
corresponding little group. Therefore, analysis of little
group plays an important role in the study of the
transformation of one-particle states under the
action of inhomogeneous Lorentz group.

For massive particle case we can choose
a standard four-momentum kµ as [2]

...(6)

This standard four-momentum remains
invariant under the action of corresponding little
group element. As physical state- vectors are
expressed in term of eigenvectors of the four-
momentum Pµ, a standard Lorentz transformation
is needed to get four-momentum from kµ i.e

       ...(7)

Here, we mention a Casimir operator PµP
µ

of Poincare symmetry which commutes with all
Lorentz transformation operators. A one-particle
state is its eigenstate with the eigen value P2, given
as

     ...(8)

is spacetime metric with

Equation (8) represents a quantity which
remains invariant under a Lorentz transformation
provided the principle of casuality is not violated
[4]. As long as the velocity of a physical object is
less than the velocity of light, this principal is not
violated.

The little group element in our case is given
by [2]:

        ...(9)

Where Λ represents homogeneous
Lorentz transformation and k(p) is a standard boost
which takes the standard four-momentum kµ to pµ.
A convenient expression for this boost can be written
as [2]

         ....(10)
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...(12)

where

Using  (8) we get

...(13)
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Now to simplify our line of action, we
suppose that the particle is moving along the three-
axis direction. This assumption does not alter the
value of p² and an explicit expression for pµ can be
written as

...(14)

where   .

As long as kµ is not boosted, little group is
O(3) like. Obviously a boosted four-momentum
would be associated to a new little group. We are
interested in such a transformation that leaves value
of p² in (13) invariant. We can compare p²  in (13)
with the metric of Minkowski space5. Here, in our
case, we deal with a situation where the particle is
boosted and massive. However, in the nonrelativistic
limit, invariance of p² can be achieved5. The
transformation that keeps value of p² invariant
belongs to a continuous, non-compact, and one-
parameter Lorentz group6. This group is like group
of rotations through imaginary angles6.  Since the
particle is in motion, the sole generator of this group
can be identified with B3, i.e third component of
boost three- vector2. Obviously we have B1=B2 When
particle velocity reaches to ultimate speed c, p2 in
(13) no longer remains a physically realizable
quantity. Only sensible substitution we can do is to
put m = 0 in (13). Hence we have

...(15)

This condition is related to massless
particle [2].

As we have mentioned earlier, little group
for massless particle must be different.  To get its
structure we make use of (4) and (5).
Representations of inhomogeneous Lorentz group
and corresponding little group are closely related,
and so are their respective group algebras.
Therefore, as we have B1 and B2 absent, (4) and
(5) show that J1 and  J2 should also be absent.  Now,
the only generator left is J3. Since in massive particle
case,  little group was three-dimensional rotation
group, the little group generators  were J1, J2, and
J3. Now in the limit of boosted massive particle, with

m = 0, we have  J1 and J2 equal to zero, so only
generator of new little group would be J3 alone. At
this point we compare our result with [2]. Expression
for most general element of little group for massless
particle is given as

          ...(16)

Where θ, α and β are the parameters of
corresponding little group ISO(2) , consisting of
translations and rotations in two dimensions.
Generators of this group are  N1, N2 and J3, where

...(17)

...(18)

Now, whether it is nature’s constraint or
our incapability to deal with such a situation, we
are here forced to set these non-compact
generators equal to zero. Then the only remaining
generator is the rotation around three-axis J3, which
is nothing but the helecity of the particle. Here we
notice that setting N1 and N2 equal to zero is an
absolute necessity as long as we are dealing with
observed massless particles of integer and half-
integer helecities. As for treating N1 and N2 as gauge
generators7-10, leading to electromagnetic gauge
invariance, we differ altogether with the established
facts. As long as N1 and N2 are parts of the little
group, treating them as generators of gauge
invariance and simultaneously setting them equal
to zero is not justified.

CONCLUSIONS

Our analysis is, to show how to get the
little group generator for massless particle in a
simple way. Non-compact generators are not
present and we make no additional assumption to
set them equal to zero. A comparison has also been
made between our line of action  and the standard
procedure. It has been found that, comparatively,
we are in advantageous position to get the same
result and yet not setting the non-compact
generators equal to zero.
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