Vibrational spectroscopic studies of guanidinium hydrogenselenate C(NH₂)₃.HSeO₄

C. YOHANNAN PANICKER^{1*}, HEMA TRESA VARGHESE², SHEENA MARY Y³, B. HARIKUMAR⁴, G. KRISHNAKUMAR⁵, K. RAJU³ and P.S. AMALA DEVI⁶

¹Department of Physics, TKM College of Arts and Science, Kollam - 69 1005 (India).
 ²Department of Physics, Fatima Mata National College, Kollam - 691 001 (India).
 ³Department of Physics, University College, Thiruvananthapuram (India).
 ⁴Department of Chemistry, TKM College of Arts and Science, Kollam - 691 005 (India).
 ⁵Department of Physics, College of Engineering, Thiruvananthapuram (India).
 ⁶Department of Physics, S.N.College, Chempazhanthy, Thiruvananthapuram (India).

(Received: November 15, 2009; Accepted: December 20, 2009)

ABSTRACT

The vibrational wavenumbers of guanidinium hydrogenselenate were calculated using Gaussian03 software package at different levels and the fundamental modes are assigned. The predicted infrared and Raman activities are reported. The first hyperpolarizability is calculated and the guanidinium hydrogenselenate is an attractive object for future studies of non linear optics. The calculated wavenumbers and geometrical parameters are in agreement with the reported experimental values.

Key words: Guanidinium hydrogenselenate, HF, DFT calculations, hyperpolarizability.

INTRODUCTION

Guanidinium complexes are biologically important due to their presence as a functional group in amino acids¹⁻⁵. Their physical properties are of considerable interest with regard to the variety of applications in the field of ferroelectricity, biotechnology, medicine, etc. Bushiri et al.5,6 and Fleck et al.7 reported the structural and spectral studies of hydrated transition metal guanidinium compounds. Among the transition metal guanidinium complexes, zinc compound is the only anhydrous guanidinium sulphate7,8. Antony et al.9 reported the spectroscopic properties of guanidinium zinc suphate and ab initio calculations. The guanidinium ion, is relatively simple chemical species whose structure is related to those of amides and proteins in which there is considerable interest. Two part compound with organic cation and inorganic anion are intensively investigated. Recently many new compounds have been obtained

for using in nonlinear optics. Usually, these complexes are very stable and have good nonlinear optical properties. Good chemical and physical stability is connected with the existence of inorganic part in investigated compounds, whereas the organic part is responsible for non linear optical properties. Drozd *et al.*¹⁰ reported the crystal structure, differential scanning calorimetry and vibrational low temperature investigations of the title compound. In the present work, we have calculated the geometrical parameters, vibrational wavenumbers and hyperpolarizability theoretically using Gaussian03 set of chemical codes and compared with reported values.

Computational details

The vibrational wavenumbers were calculated using the Gaussian03 software package on a personal computer¹¹. The computations were performed at HF/6-31G* and B3LYP/6-31G* levels of theory to get the optimized geometry (Fig. 1)

and vibrational wavenumbers of the normal modes of the title compound. DFT calculations were carried out with Becke's three-parameter hybrid model using the Lee-Yang-Parr correlation functional (B3LYP) method. Molecular geometries were fully optimized by Berny's optimization algorithm using redundant internal coordinates. Harmonic vibrational wavenumbers were calculated using analytic second derivatives to confirm the convergence to minima in the potential surface. The DFT hybrid B3LYP functional tends also to overestimate the fundamental modes; therefore scaling factors have to be used for obtaining a considerably better agreement with experimental data. Thus, a scaling factor of 0.9613 has been uniformly applied to the B3LYP and 0.8929 for HF methods calculated wavenumbers¹². The observed disagreement between theory and experiment could be a consequence of the anharmonicity and of the general tendency of the quantum chemical methods

Fig. 1: Optimized geometry

Bond lengths (Å)		Bond Angles (º)		Dihedral Angle	Dihedral Angles (º)		
C1-N2	1.3663	A(2,1,3)	119.1	D(3,1,2,5)	175.5		
C1-N3	1.3282	A(2,1,4)	120.4	D(3,1,2,6)	28.5		
C1-N4	1.3261	A(3,1,4)	120.5	D(4,1,2,5)	-5.8		
N2-H5	1.0096	A(1,2,5)	118.7	D(4,1,2,6)	-152.7		
N2-H6	1.0102	A(1,2,6)	118.0	D(2,1,3,9)	-176.6		
N3-H9	1.0564	A(5,2,6)	115.1	D(2,1,3,10)	14.0		
N3-H10	1.0095	A(1,3,9)	121.2	D(4,1,3,9)	4.6		
N4-H7	1.0591	A(1,3,10)	119.5	D(4,1,3,10)	-164.8		
N4-H8	1.0091	A(9,3,10)	118.4	D(2,1,4,7)	-167.1		
H7-O13	1.6167	A(1,4,7)	120.9	D(2,1,4,8)	10.5		
H9-O12	1.6304	A(1,4,8)	120.3	D(3,1,4,7)	11.7		
Se11-012	1.6522	A(7,4,8)	118.7	D(3,1,4,8)	-170.7		
Se11-013	1.6539	A(4,7,13)	173.9	D(1,3,9,12)	126.0		
Se11-014	1.6246	A(3,9,12)	174.7	D(10,3,9,12)	-64.5		
Se11-015	1.7987	A(12,11,13)	110.9	D(1,4,7,13)	88.4		
O15-H16	0.9746	A(12,11,14)	116.7	D(8,4,7,13)	-89.2		
		A(12,11,15)	103.4	D(4,7,13,11)	-127.3		
		A(13,11,14)	116.0	D(3,9,12,11)	-147.1		
		A(13,11,15)	103.9	D(13,11,12,9)	-1.4		
		A(14,11,15)	104.0	D(14,11,12,9)	-137.2		
		A(9,12,11)	115.9	D(15,11,12,9)	109.3		
		A(7,13,11)	115.9	D(12,11,13,7)	24.2		
		A(11,15,16)	102.9	D(14,11,13,7)	160.3		
				D(15,11,13,7)	-86.3		
				D(12,11,15,16)	123.4		
				D(13,11,15,16)	-120.7		
				D(14,11,15,16)	1.0		

Table 1. Devinetrical parameters (Dr 1) of the title compound

	HF/6-31G*		B3LYP/6-31G*				υ _(IR)	$\boldsymbol{v}_{(Raman)}$	Assign-
	υ(cm ⁻¹)	IR Intensity	Raman Activity	υ (cm⁻¹)	IR Intensity	Raman Activity	(cm ⁻¹)	(cm ⁻¹)	ments
3559 88.00 39.26 361 46.72 60.81 3419 $v_m NH_2$ 3501 104.12 73.74 3521 49.93 95.48 3337 $v_m NH_2$ 3495 121.65 37.18 3518 84.81 55.77 3262 3443 $v_m NH_2$ 3065 241.07 244.91 2784 423.32 378.66 3175 $v_m NH_2$ 3065 241.07 244.91 2784 423.32 378.66 3175 $v_m NH_2$ 3063 39.94 29.11 2642 125.66 15.16 2955 $v_m NH_2$ 1660 275.77 8.61 1633 220.51 10.88 1646 $\delta_m NH_2$ 1660 275.77 8.61 1532 8.71 0.56 $p_N H_2$ 1737 0.97 1118 72.12 2.71 $p_N H_2$ 1030 72.43 0.77 1056 0.82 2.79 1065 $p_N H_2$ 1073 3.51 0.77 118 72.2 2.16 904 $v_2 CN_3$	3559	156.19	108.39	3571	69.76	87.79	3449		υOH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3559	88.00	39.26	3561	46.72	60.81	3419		$v_{as}NH_2$
3495 121.65 37.18 3618 84.81 55.77 3262 3443 $\psi_m N H_2^2$ 3445 74.89 72.59 3460 48.25 118.38 3212 3364 $\psi_n N H_2^2$ 2968 349.94 29.11 2642 125.66 15.16 2955 $\psi_n N H_2^2$ 1731 7.45 1.54 1692 324.46 0.11 1734 1677 $\delta_m N H_2^2$ 1660 275.77 8.61 1633 220.51 10.88 1646 $\delta_m N H_2^2$ 1660 275.77 8.61 1633 220.51 10.88 1646 $\delta_m N H_2^2$ 1660 275.77 8.61 1633 20.51 10.88 1646 $\delta_m N H_2^2$ 1660 275.77 8.61 1633 20.51 10.88 1646 $\delta_m N H_2^2$ 1660 275.77 8.61 1623 2.10 $\gamma_m C N_3^2$ $\gamma_m C N_3^2$ 1147 16.04 0.84 1122 31.43 0.91 $\rho_m N L_2^2$ $\rho_m N L_2^2$ 1090 720.43	3501	104.12	73.74	3521	49.93	95.48	3337		บ NH_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3495	121.65	37.18	3518	84.81	55.77	3262	3443	บ _ล ู้NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3445	74.89	72.59	3460	48.25	118.38	3212	3364	ึง _เ NH₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3065	241.07	244.91	2784	423.32	378.66	3175		υͺ̈́NΗ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2968	349.94	29.11	2642	125.66	15.16	2955		υ ู้NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1731	7.45	1.54	1692	324.46	0.11	1734	1677	$\delta_{as}NH_{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1692	455.29	4.92	1678	18.99	3.56		1661	$\delta_{as}NH_{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1660	275.77	8.61	1633	220.51	10.88	1646		δ _{as} NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1603	94.83	0.60	1565	8.51	0.50	1564	1558	δ _s NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1569	211.09	2.30	1540	58.08	2.93			υ SCN3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1147	16.04	0.84	1122	31.43	0.91			ρÑΗ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1125	31.57	0.97	1118	72.12	2.71			ρNH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1090	720.43	0.79	1117	43.32	2.18	1098		ρNH,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1073	3.51	0.77	1056	0.28	2.79	1065		ρNH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	992	75.55	2.52	984	42.23	27.17	1008	1008	δΟΗ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	974	32.15	19.46	939	198.88	6.49	964		υ _s CN ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	969	149.99	0.67	917	163.81	1.78		916	δŎΗ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800	87.95	11.65	861	112.50	2.74		848	υSeO₄
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	772	52.65	9.12	838	13.84	2.20	833	832	υSeO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	743	259.90	0.78	830	123.30	33.66	731	731	ηCN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	697	82.31	27.15	680	3.59	0.35	711	717	ωSeÕ₄H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	647	79.47	46.71	609	119.94	14.11	573		υSeO₄
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	616	385.31	1.19	551	20.50	2.21	531	530	ωNH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	563	2.89	3.11	515	133.61	2.02	523	526	δN ₃ ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									ωŇH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	537	4.33	1.98	473	271.90	2.93			ωNΗ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	532	24.03	0.54	436	7.99	2.30		429	υSeŌ₄
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	503	3.00	1.97	399	98.54	4.47	415	417	δCN ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	357	168.47	9.12	386	49.14	2.45			δSeŎ₄
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	355	129.19	4.98	373	237.35	2.29		366	δSeO_4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	323	81.62	6.58	348	33.84	3.44		352	δSeO₄
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	268	5.94	0.43	289	20.76	3.51		311	tNH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	261	14.43	5.60	279	7.99	3.17			δSeO₄
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	256	22.98	5.45	203	57.82	0.62			δSeO₄
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	182	109.66	2.32	196	5.03	0.89			δSeO₄H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	166	37.31	1.53	181	41.00	1.54			δCNH
$ \begin{array}{ccccccccccccccccccccccccc$	147	19.84	4.54	162	13.80	3.72			δCNH
	107	3.34	1.57	118	4.08	0.31		134	δCNΗ
	59	6.22	0.06	69	9.36	1.46			γSeO₄
29 7.59 0.08 21 5.07 0.52 γSeO ₄ ²	41	0.03	3.06	34	0.81	3.17			δCNH,
	29	7.59	0.08	21	5.07	0.52			γSeO₄

Table 2: Calculated (scaled) wavenumbers and assignments

 υ -stretching; δ -in-plane deformation; γ -out-of-plane deformation; ω -wagging; t-torsion; subscripts: as-asymmetric, s-symmetric. IR and Raman spectral data are taken from

to overestimate the force constants at the exact equilibrium geometry. The obtained geometrical parameters are given in Tables 1.

RESULTS AND DISCUSSION

The calculated (scaled) wavenumbers and assignments are given in Table 2. The guanidinium ion vibrations are mainly due to NH and CN bonds. The fundamental modes of CN₃ are expected¹ at 1041 and 1695, 717 and 498 cm⁻¹. In associated aliphatic and alicylcic primary amines¹³, the NH₂ asymmetric stretching vibration occurs at 3365 ± 25 cm⁻¹ and symmetric stretching vibtration in the region 3290± 30 cm⁻¹. The NH₂ scissoring vibration¹⁴ give rise to a broad band in the region 1600 ± 50 cm⁻¹. According to Roeges¹⁴ the rocking/twisting NH₂ mode is expected in the region 1160 ± 140 cm⁻ ¹. Drozd et al.¹⁰ reported the NH2 vibrations at 3449, 3377, 1564, 1555 cm⁻¹ in the IR spectrum, 3443, 3314, 1558, 1549, 1098 cm⁻¹ in the Raman spectrum. The vibrations due to CN are reported at 1646, 1008, 731 cm⁻¹ in the IR spectrum and at 1661, 731 cm⁻¹ in the Raman spectrum¹⁰. The stretching vibrations of the Se-O bonds¹⁵ appear in the region between 1000-800 cm⁻¹. The SeO4 vibrations are reported at 953, 909, 876, 837 cm⁻¹ in the IR spectrum and at 916, 848 cm⁻¹ in the Raman spectrum¹⁰.

For the title compound, the DFT calculations give the bond lengths $Se_{11}-O_{14}$, $Se_{11}-O_{14}$

 O_{12} , Se_{11} - O_{13} , Se_{11} - O_{15} , C_1 - N_2 , C_1 - N_3 , C_1 - N_4 as 1.6246, 1.6522, 1.6539, 1.7987, 1.3663, 1.3282, 1.3261Å where as the reported values are 1.6055, 1.6095, 1.6204, 1.7124, 1.2878, 1.3079, 1.3358 Å respectively¹⁰. Drozd *et al.*¹⁰ reported the bond angles O_{14} - Se_{11} - O_{12} , O_{14} - Se_{11} - O_{13} , O_{12} - Se_{11} - O_{13} , O_{14} - Se_{11} - O_{15} , O_{12} - Se_{11} - O_{15} , N_2 - C_1 - N_3 , N_2 - C_1 - N_4 , N_3 - C_1 - N_4 as 116.1, 112.1, 110.5, 103.7, 107.1, 116.5, 120.1, 120.7, 119.5° whereas in the present case the corresponding values are 116.7, 116.0, 110.9, 104.0, 103.4, 116.0, 119.1, 120.4, 120.5°, respectively.

Analysis of organic molecules having conjugated π -electron systems and large hyperpolarizability using infrared and Raman spectroscopy has evolved as a subject of research¹⁶. The first hyperpolarizability (β_0) of this novel molecular system is calculated using theoretically, based on the finite field approach. In the presence of an applied electric field, the energy of a system is a function of the electric field. First hyperpolarizability is a third rank tensor that can be described by a 3 3 x 3 matrix. The 27 components xof the 3D matrix can be reduced to 10 components due to the Kleinman symmetry¹⁷. The calculated first hyperpolarizability of the title compound is 2.8210-³⁰ esu (B3LYP/6-31G* methods). We conclude that the title compound is an attractive object for future studies of non linear optical properties.

REFERENCES

- 1. Chakarborty, D., and Manogaran, S., *Ind. J. Chem.* **33A**: 969 (1994).
- Sension, R.J., Hudson, B., and Callis, P.R., J. Phys. Chem. 94: 4015 (1990).
- Nemec, I., Machackova, Z., Teubner, K., Cisarova, I., Vanek, P., and Micka, Z., *J. Solid* State Chem. 177: 4655 (2004).
- Carver, G., Spichiger, D., and Tregenna-Piggot, P.L.W., *J. Chem. Phys.* **122**: 124511 (2005).
- 5. Bushiri, M.J., Antony, C.J., and Fleck, M., *J. Raman Spectrosc.* **39**: 368 (2008).
- 6. Bushiri, M.J., Antony, C.J., and Fleck, Solid

State Commun. 143: 348 (2007).

- Fleck, M., Bohar, I., and Tillmanns, E., Solid State Sci., 6: 469 (2004).
- Morimoto, C.N., and Lingafelter, E.C., *Acta Cryst.* 26B: 335 (1970).
- 9. Antony, C.J., Bushiri, M.J., Varghese, H.T., Panicker, C.Y., and Fleck, M., *Spectrochim. Acta* doi:10.1016/j.saa/2009.04.024.
- 10. Drozd, M., Baran, J., and Pietraszko, A., Spectrochim. Acta 61A: 2775 (2005)
- 11. Frisch, M.J., *et al.*, *Gaussian03, Revision C.02.*, Gaussian Inc., Wallingford, CT (2004).
- 12. Foresman, J.B., in: Frisch, E., (Ed.),

Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, Pittsburg, PA, (1996).

- 13. Segal, L., and Eggerton, F.V., *Appl. Spectrosc.* **15**: 112 (1961).
- 14. Roeges, N.P.G., A Guide to the Complete Interpretation of Infrared Spectra of Organic

Structures, Wiley, New York (1994).

- 15. Paetzold, R., and Amoulong, H., *Z. Anorg. Allgem. Chem.* **317**: 166 (1962).
- Tommasini, M., Castiglioni, C., Del Zoppo, M., and Zerbi, G., *J. Mol. Struct.* **480**: 179 (1999).
- 17. Kleinman, D.A., *Phys. Rev.* **126**: 1977 (1962).