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ABSTRACT

We introduced a symmetric dual for multiobjective fractional variational programs in second
order. Under invexity assumptions, we established weak, strong and converse duality as well as self
duality relations .We work with properly efficient solutions in strong and converse duality theorems.
The weak duality theorems involves efficient solutions .
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INTRODUCTION

The growing science of communication
between two communicators requires security and
integrability. After the wide study of fractal sets,
Jensen’s inequality for convex functions and it's
usefulness in the study of entropy, paves the way
for multiobjective continuous time programming.

The classical dual in linear programming
is symmetric in the sense that the dual of dual is
the original linear programming . Such symmetry is
not found in duality concepts for nonlinear
programming , not even in quadratic programming?’.
In®¢ Dorn introduced a different dual for quadratic
programming , which is symmetric . Extending these
results to general convex programming . Dantzig ,
Eisenberg and Cottle!” formulated a symmetric dual
and established weak and strong duality relations.
Symmetric duality results under generalized
convexity were given by Mond and Weir in® for new
types of a dual , then in® Weir and Mond introduced
two distinct symmetric duals for mathematical
programming under additional assumptions
mathematical programming are shown to be self
dual.

In® Mond and Hanson first extended the
symmetric duality results of*’ to variational problems
by introducing continuous analogues of the earlier
concepts . Since Hanson defined invexity in?* as a
new generalization of convexity . Several authors
have introduced concepts of invexity and
generalized invexity for use in convex programming
e.g. [1,15,7,22]. Smart and Mond?? extended
symmetric duality results to variational programming
by employing a continuous version of invexity . Kim
and Lee®® presented a symmetric duality in the
sense of a dual proposed by Mond and Weir® not in
the sense pf Wolfe's dual as in??, establishing duality
relations for variational programming here by
assuming pseudoinvexity . subsequently , Kim, Lee
and Lee extended the results in'® to the
mathematical case .More, recently Kim and Lee®®
formulated a symmetric and a generalized
symmetric dual for mathematical variational
programming , weak , strong and converse duality
relations are obtained under invexity assumptions.
Further generalizations of convexity for continuous
time programming have been done by many authors
like Kim and Lee?® , Mond and Hussain” Mukherjee
and Mishra®. Assumptions of convexity / concavity
for functions involved are common in these works .
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In this article , we focus on symmetric duality for
fractional programming for bonvex function.

In this article , we introduced a symmetric
dual for multiobjective fractional variational programs
in second order . Under invexity assumptions , we
established weak , strong and converse duality as
well as self duality relations .\We work with properly
efficient solutions in strong and converse duality
theorems. The weak duality theorems involves
efficient solutions .The article is organized as follows.
In section 2 we introduced the multiobjective
fractional variational programming and it’s proposed
symmetric duality as well as bonvexity for such
problems. Section 3 contains the weak , strong and
converse duality theorems as well as a self duality
theorems. Finally in section 4 we specialize these
results to the static case and particular cases as
discussion and conclusion.

MATERIALS AND METHODS
To compare vectors along the lines, we will

distinguish between £ and £ between 3 and 3
specially, all vectors are in R.

=12,.,..Nn;
XSy < x<y,i=12,.,.,.n;

X<Y& X <Y,

XSy XSy,i=12,.,.,n,but X£Y .

is the negation of

Let be a real interval

a n d

gl xR"xR"xR"xR™ > R*.

Consider the vector valued function

f(t,x, %Yy, ® , where ., and are
functions of  with and ,and
¥ and denote the derivatives of and ,

respectively, with respect to t . Assume that f has
continuous fourth - order partial derivatives with

respect to x and y, and and denote

the K x n matrices of first order partial derivatives

Ojha, Mat. Sci. Res. India, Vol. 7(2), 413-424 (2010)

with respect to x and . While and s

denotes k x n matrices of second order partial
derivatives .

i =1,2,.,..k. Similarly, , and ,

denote the k x m matrices of first order and second
order partial derivatives respectively with respect

to and

Consider the following multiobjective
fractional variational programs.
(MFVP)
min.

RYog FRS@.#0.y0. w0p Al
. L ADMD) Loy
A por (X (O 1),y (1), & ®)

e X is said to be an efficient (Pareto optimal)solution

of (MVP)if for all (t, X(t), &t), y(t), ¥t)) ex,

b * * * *
[ x ()% (1), y (1), ¥ ()t
a

Definition

A point (t, X(t), ¥t), y(t), ¥t)) exis
said to be a properly efficient solution of (MVP) if it

is sufficient for (MVP) and if there exists a scalar M
> 0 such that, for all ie{1,2,.,.,k}
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b
[ £ (6 x(1), &), y(t), ) dit
a

b
<M(J F; (6 X(0), 80), y(1), RO)dt
a

b * * * *
Ifj(t,x (0, % (1), y (1), % (1)dt)
a

for some j, such that

b
I F; (6 (), %), y(1), o))t
a

b * * * *
I fj(t.X (), % (1), y (1), & (1)at
a

whenever (t, X(t), Xt), y(t), ¥t)) €x and

b * * * *
[ X %),y (1), % [®)dt
a

Definition
Apoint (t, X(t), ¥t), y(t), ¥t)) ex is
said to be a weakly efficient solution if there exist

no other feasible point
for which

b
J £t x(t), &), y(t), |t))dt
a

RGh R
f XFREOR() XL
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Definition
Bonvexity

b

The vector functional J. f is Bonvex in x
a

and , if for each y : [a,b] — R™ with piecewise smooth
on [a,b], then there exist ,A,P :[a,b] x R"X R"x R™
x R™ — R" such that for all i = 1,2,.,.,n

b
_[rz(!, X, 08U, @) [{ fi (t,u, &y, ¥ — Df o(t,u, &y, W} +{ fi, (t,u, &y, ¥ — D fg(t,u, &y, R}P(t, X, §u, §]dit

for all x : [a,b]>R" , u :[a,b]>R" with with are
piecewise smooth [a,b].

Definition
Boncavity
b

The vector I f functional is Boncave in
a

,ifforeach x :[a,b] > R™with  piecewise

%MMW
ORI = 2.

y and

b
-,‘.s’(‘,v,&)’v B, (U &y, B~ Df,y(t,u, &y, B} +{ f,, (U &Y, B — D*f ot U, &y, B S(t, v, &y, Bldt

for all v : [a,b]>R™ , y :[a,b]>R™ &t) with
with are piecewise smooth [a,b] .
Definition
Pseudo-Bonvexity

The vector functional is Pseudo-Bonvex
in x and , if for each y : [a,b] — R™ with piecewise
smooth on [a,b] , then there exist ,A,P :[a,b] x R"
X R"x R™x R™ — R" such that for all i = 1,2,.,.,n

>0= 0.
I[(f(lxi?;y% fi(tLu &y, B} +> AT{f wbu&y,®-D f)&&(tul&y%)A]dl
for all x : [a,b]>R" , u :[a,b]—>R" with )&t) with

are piecewise smooth [a,b] .
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Definition 2.5 Pseudo-Boncavity

The vector functional is Pseudo-

Boncave iny and , if for each x : [a,b] - R™ with

piecewise smooth on [a,b] , then there exist &,

W,S: [a,b] X R"x R"x R™x R™® R" such that for all
i=1,2,.,,n

<0=>

jh[{ fi(t X8V B (LU, Gy, x&}+§WT{ fi (LU Y, ) — D fg(t, U, Gy, WIW]cl
<0

for all v : [a,b]>R™ , y :[a,b]>R™ with ‘&t) with

are piecewise smooth [a,b] .

Definition 2.6 (Skew- Symmetric)

The vector functional is is said to be

skew- Symmetric when both x and y e R"

We make the following assumptions .
0] f and g are thrice continuously

differentiable with respectto (x, )and(y, ), x:

I D R"and y : | ->R™ are piecewise thrice
continuously differentiable ;

Let = (tx@®,  Oy®», ©), =

(tx(®),  (©).y. O),

etc.;

(ii) F =

are

- [0 x(). 8, y(o), D)t

bonvexinxand g, and —
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and G, =

I b g, (t, x(t), &), y(t), ¥t))dt are

bonvex iny and ;

(iii) In the problem Multiobjective fractional
programming Primal (MFP) and Multiobjective
fractional programming Dual (MFD) , the
numerators are nonnegative and denominators are
positive ; Denote by X the space of thrice
continuously differentiable functions x : I -R" with

the norm |X|=X, +|Dx], + D] +[D*.

where the differential operator D is given by

u=Dxext)=a+ ,and x(a) =

t
[u(s)ds x(b) =
a

d

dt

B are given boundary values;thus D= except

at discontinuity . Denote by Y, the space of thrice
continuous differentiable functions vy :
the norm similar to that of space X.

I -R™ with

and

and consequently

|

2
(D fal = Tag * Dlgg,

, ,ER(DZf%)—f +Df gge

o
a—y(DfxgzszW,
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0 B 0 )
o@Dl Dlgg . T (Df =Dy

0

Similarly with g also.

In order to simplify notations we introduce
(MFP)
b b
1 U
Fouy {f.(t,x,&y,m—gi[/& { £, (€% 8y, B - D*fg(t, X Ry, Y A it ,
b b
GO fg gy, Bat+ [ [ 10, 0% 8y, B - Da xRy, B)BJat

min.

[ fiex %y, x@dt—j%[A*( fiy (6% %Y, B = D fglt, X, By, WAt Fooy
a a — 7 ,l

T Gxy)

b b
[9x 8y, Bat+ | 2[Bg,, (X 8y, B~ D5 u(t X 8y, BB ck

subject to

x(@) =0 =x(b) , y(a) = 0 = y(b).

¥a) = 0= Rb), Ka) = 0= &b)

) «
I YO Y AL (6 X8y, 3 — Dig(t, X, 8 Y, BYG (X ) ~{9y (t, X, %y, ) — Dgy(t, X, &y, B}F (X, )]
H{ (6 %8y, 9 — D figg(t, X 8y, BYAG, (X, V) ~{ 9y, (t, XY, B — D*gelt, X, &y, B} BF (X, y)]

A>0,Ae = 1tel .

(MFD)

b

£ (t,u(t), @), v(t), &) dt — [RT{ fixx(t' u(t), &), v(t), &t)) - szi}&‘(t, u(t), @), v(t), &)} R} dt

9(t,u(t), &), v(t). &) dt +

» —olp —
o —oly —o
NIE N e

[T 615 (1000, 80,0, 80)) - D0, gt (), ). V(). ) S

Max. = =
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subject to

u(@) =0 =u(b), v(a) = 0 = v(b).

Wa) = 0= &b), &a) = 0= &b),

<0,

b k
i T 2 A G X8, - Dfft By, BIG (6.9) (51X 8.9 - DGl By, B 1Y)

H{ g (6085, 9~ D26 gt 8, BIRG, (%) ~{ G 1. % 8,9 - D20, g%, By, WISF, (x.)]

<0,
A>0,ATe =1tel .

Basic Results
Now, we express (MFP) and (MFD) equivalently as
(MFPY)

Minimize |=(L,L,L,.,....1 )T (1)
subject to

<0 .. (6)

b k
| Y(I)TZ AL, (X8, B - Dfy(t, x &y, B} - 1{g, (t. X, &y, B - Dgy(t, X, &y, ¥}

Ay (6%, By, B~ D Fiy (6, X, By, B} A- {9y, (6. X, By, B ~ D Gilt, %, By, B} B]

<0 (7
A >0, e = Ltel . ..(8)
(MFD*)

L = (LyLylanl)T (9)
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subject to
u(@) =0 = u(b) , v(a) = 0 = v(b). ...(10)
Wa) =0=&b),Ka)=0=\b) ..1
. (12)
-L- =0 ..(13)
<0, ..(14)

b k

! u(t)TiElﬂi[{ i X8y, B - D ft, &Y, B - L{g, (%, &y, B - Dy ft, x 8y, B}]

Al (X 8y, B - D2 et x By, BER-L{g, . (X8, B~ D2g gt x &y, B} ]

<0, ...(15)
A>0,ATe = 1tel . ...(16)

In the above problem (MFP*) and (MFD*),

it is to be noted that | and L are non-negative as a
consequence of assumption (iii) .

Duality Theorems

In this section , we state duality theorems
for (MFP*) and (MFD*) which lead to corresponding
relations between (MFP) and (MFD) . We establish
weak, strong and converse duality as well as self-
duality +relations between (MFP*)and (MFD*).

Theorem 3.1(Weak Duality)
Let (x(t),y(t),1,A) be feasible for (MFP*) and
let (u(t),v(t),L,A) be feasible for (MFD*). Assume that
b
J. fi and
a

are invex in x and ,

and and are invex in y and , with

+u() 0>, and £(V,y) +y(t) >0 forall t

(1) or

el (except possibly at corners of (¥(t),

( (), (). Then one has

I L

i> it

Proof

The invexity assumptions of and

imply that , i=1.2,.,.,.k,

are Bonvex . Then we have

I:{ fi(t, &V, 8 — L;g; (t, X, %v, B}t -
I:{ f, (6 u, v, 8 — L;g; (t,u, &, @} dt

oW L] (LU BV, 8- L g (U, &Y, 8)
a_p f et U &V, 8~ L g, oft,u, &V, @} |t
+
76 WTILE (LU GV, BR-L g (U &Y, 8S} -
4py f: gelt U BV, R - L. . o [t,U, &V, B S} ot

J ) x,@,@)}ﬂggﬁ W)bgwp, X%y, 9}

T 0 480, 9. DF 1 11818
~ L1, (.U, BV, B} - Dy oft, U, v, B}

+

BT (4U, &Y, BR-D2f,  (t,U, &V, 8}
R- Li{gi)o((t,u,l&v,‘&S— ngi&‘(t,u,l&v,‘&}S]dt

From (8), (14),and (15) with n+u(t) > 0 , we obtain

izij:{ fL (6%, 8%V, B — L g (t, X, &v, B} dt >

b
L G- 3 RTET (600 8000 8) - D21 gt u). 0.V O R
DEIN “y
T La g - 5] ST (100 B0 ) - D2, gt (0. B V). FODS ek
a

..(17)

b
The invexity assumptions of —J. fi and
a

imply that 1= 12,00k,
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are Bonvex . Then we have

then >0,
I:{ (6, % &V, @ —1,g, (t, X, %v, B} dt -

i=1.2,.,.,.k, implies that

I:{ fi (t’ X’&y’ @ _Iigi (t’ X’&y’ %}dt

< which contradicts (19). Hence | >L, .
Ibf(w y)T[{ f(tx &y, B-1.g (tx%&Y, ) We now present proof of a strong and a
a ly =y converse duality theorems .
_D{ flﬁ(t’x’)&'y’%_llgl (taxvﬁy! %}]dt

Theorem 3.2 (Strong Duality)

+ Let be thrice differentiable function on R"
b T x R™. Suppose that (x,(t),y,(t),A%B°A,) be a properly

38V )" [{ fiyy(t’ X, &Y, 31'!’)R—|i giyy(t, X, %Yy, ®S} efficient solution for (MFP*). Fix A=A, in (MFD*) and

=D f gt X By, BR-1,0, goft x By, Bt 2

b b
% yo,mdth%[A'( i (6 %005 You Y8) — D7 Tt 3,8, Yo, )P Al
= ? FET. T G(x.Y)

! g.(nm%%)du{;[a {9, (6% Yoo 1) ~ DGyt X0, % Yo )} B |t
IR IR (X By, = D, oft, x By, B}~
(9, 6 X8y, 9 - Dy ft. x By, B ck k
+ (i) 2 Aall fiy 169y} — D fig—1 0]
40 dt<0
jgg(v, W fiyy(t,x, %y, BR- szi;@ﬁc(t’ x, %Yy, B}R a;ﬁ)iﬁngﬁ 3
~1i{G1yy X%y, BS— D70 go(t, . Ry, B} Slckt

_Falx)

=lho

i=1,2,.,.,.k. Assume that

Zk:/IOi [{(f, —Dfy+(f, ~D*fgE) A%} -1,

{(9, - Dgy) + (8, —D’gy)B}1# 0

From (6), (7),and (16) with y+y(t) > 0, we obtain

iaij:{fi(t,x,&v,@—ligi(t,x,&v,@}dt e i
B i) € ] (fyy ~laGy, )t | (F,, ~ 1oy, )clt

[, (6 %y, ﬁ—?l[AT{f (6,00, 380), Y(0), ) ~ D21, 2o(t, X(0), 80), Y(¥) mw b
] iyy I [ J'(f

Y4, y — |Ok gky)dt } is linearly independent.

{9t x %y, x&—?l[BT{g (6 X(0) ), Y(0), /1)) ~ D2g goft, X(t). ), y(t) ﬂw»s})]dt
0 xRy =15 B Ly (1XOR0YO), gl >RV,

..(18)

If The invexity conditions of Theorem 3.1
are satisfied, then (x,(t),y,(t).A, ,A, ) is properly
efficient for (MFD?*) .

Combining (17) & (18) along with (5) and (13) gives (iv) The system

o[ ({1~ D* 1 )A° 1y (9,5, ~D0) - Dfy, + D1, ]

k b .

_ 705[{“‘%7sz‘mef‘”)AOJr(TWfDT#f fig )b —
2 ,ii (I| I—i )I g (t’ X, )&'V"&dt >0 ...(9) | ((gm—o O~ DOy )B + (G Dg, )
i—1 2

+D7[{~ (f + D) A’ + i} ~lo{~ (9,,,+Dg,)5 + G} = DT{ A’} ~{-1o{ 9B} (1) = 0

If, forsome i, < Landforallj i,l<L;, has only solution o(t) =0 for all t[a,b].
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Then (x,(1),y,(t),R%,S°A,) satisfy the constraints of
dual problem and 1, (x,(1),y,(1),A%B%x;)) =L,
(%,(0.y,(1),R%S%2,) . If in addition , the functional

,i=1.2,.,.,.k, is pseudo Bon-invex

in x and for all feasible solutions of (MFP*) and
pseudo Boncave iny and for all feasible solutions
of (MFD*) with

n(x,u) +u(t) 0 and §(v, y) +y(t) 0 , {except
perhaps at corners of ( (1), () or

( (@®, (@)} Then (x,(1).y,(1),A°B%A,) is global
solution for (MFP*) and (x(t),y,(1),R°S°A,) is global
solution for (MFD¥*) .

Proof
Since (x,(1),y,(1),A%BC1) is an efficient
solution for (MFP*) , therefore , there exist

eR"x R" x R™x R™ such that

st= ,

Satisfies the following Fritz John conditions

..(20)

- DS;+D’Sp—D*§=0

S, - DS, + D?S;— D®S,=0

..(21)

{(f,, AT =150,,B) - D(f A ~1,0,,B™ )} - B +11y™) =0 (22)

X o, =0 ...(23)
(2%)
2 Aam Y {(fy =159,) ~ D(fe— 16,00} + 44 Y™ {(,, A7 ~159,,B7)
-(25)
DA 1,657 =0
(@B 1,0, 2) > 0 .(26)
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#0. . (27)

Now, from (20) is

...(28)
From (21) is

210 a- #[{(flx I 90~ Dl 9k~ G A%+ 89—y
{(fiyyx Gy B9T)- DZ(fI%&AOT Ii9) WB »
+<ﬁ—uvy°T){(fiyxA°T—lo-g,yXB"T) D(fig oGN]
fD[[Z:/L.)f(%/z(AO+BO)*ﬂ+ﬂ-y0){(fi T —15:0,” ) - D g AT ~15,0, 55 B7T)
‘ i ?495('% Mo

B e ol o lpn )
KW@WB#&@W&%%Q& ;,a/'\). |m%%ﬁiﬁoﬁ&“g 01,5587 )
Sl g~ O -0

Ol t%FEN* b AO-HOY iy O Bt B AP Dl AT &y D (e~ 0,87}

+Zl (B = 1y W (AT ~15,9,4B™) = D(fige~ 16, G) ~ (g A =159, BT}

DGR B~ 5 iy N O (A 140, B) D1 A 10,87} ...(29)
(2/1[.‘ (B = 1Y -(fg= 1G] b
,D“[(%a(A"+B")—ﬂ@(%%?mf|(ﬁurm1%iGi ) dt — O
a
...(30)
. 2 .
Since {( fiyy - IOi giyy) -D ( fi)%&_ |0i giy@;&)} IS
non-singular , therefore ,(22) yields
0 0 0
(A +B)-B+uy =0
= ...(31)
We claim that >0. ...(32)
If =0 (28) gives
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..(33)

From (33) and (28) , we get

=0
..(34)

From hypothesis (ii) , equation (34) gives
i, =0,8=0. Hence if =0,

then

too .

Again from equation (33) and (29) , we

get . Hence, we observe that =0,

then and which

contradict (27).

Therefore (26) and (25) yield

..(35)
Now from equation (28)and (31)
k
or or 0T
2 o (o= CT 1.8 DCtg- g +((1 A% 1y, B - D ggaT -1 0,080
-G A BN (1 AT -l 0 BT~ D21 AT 10,087
—D[—(la(A%B"))(( T \Ogmg‘”) DA% 1691, B7) - D2 1015087
k
+L/1 ((f,w{\ f\o,gwg% (fig 01 %~ (; A ~l6i%gB T
+D2[( a(A%+BY)(D?2 (1‘%/«0T | g‘mB )+ D1 g 7|0‘Q‘WBOT))
3, 0, g0: or 0T
‘El"oﬂ"”w’ugw?”"’“E"(A BOD (1 g™ 1 0™ 11 =0
...(36)

Pre-multiplying (36) by ¢ (A0T + BOT)
and using (35) ,(31) and hypothesis (iii) we get

o, (A0 +BOTy =0= (0T . gOT) =0

= (AO) =0,and

=0, because > 0.

..(37)

421
(31) and (37) yield .(38)
.

{( fix ~loi gix) - D( fig o gi)&)} >0,
because >0 . .(39)

= .But @,X” =0.
This implies that axm{( - 0|g|x) (fi)&—IOigw)}=o
..(40)

(39) , (40) and (38) show that (x(t),y,(t),A° =0,B°

=0,),) satisfies the constraints of (MFD*) . i.e.
(%,(1),y,(1),R°=0,S° =0,1,) is feasible for (MFD*) are
equal there.

i bl?(fm“ﬂ

Hr, ‘?9}-
b1 S {f%yg(g QJ({}%\@E)‘B/"(-})%(})OJS n td?rg%erly

A BB wons

1
2

RT{ o (LU0, 8009, 0, K0)
D21, go(t,U (0,80 % (1) ROBR
L.= b SN (ITORDGRTGR )
0 g (Iu(t)L&(t)v(t)&(t))del o4O BOVOHO)
a ~D2g, geft0 (0.8, v (0. KOS

a

b b
T F (60, (0, &), v, (1), R dt - [ =
a

a

i =12,k

and for some i, L, —1,>Mforany M >0.
Since denominator at ( t, x(t), X8(t), v(t),

bounded ,

(1) is

it follows that
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which contradicts weak duality .
Thus (x,(1),y,(t),A°=0,B°=0,1 ) is properly
efficient for (MFD?*) .

A converse duality theorem is stated now.
The proof is analogous to that of theorem 3.2.

Theorem 3.3
Let (x,(1).y, (1), |,,A,) be a properly efficient
solution for (MFD*). Fix for A=A, in (MFP*) and define

b b
oo 1 o o
T8 %, %0, o, )t = [ ST AT, (65,50, ¥ou o) = D7 Fy (65, K, v, o} At

_Foxy) _
[0.05 35,500+ [ 28700, (0%, 50, or30) -0, (5 v s8]t oY)
i=12,.,.k
Assume that
0}

k b
Tt 2 Y 2 2
El’lo i‘”(‘) (G =D g A o (Gjoo =D G1g5) ~ Dl g+ D figg]

1 2 0
D0 D figge Dliggd A + (fioe Dfige~ figd =

11 {(Bhoe~ D20 g~ D B+ (G1g DI~ IogM

D=3 (1 g, * Ol g P+ figd 1 -3 (05 D598+ 0,51 DA 1,2 ~(-15 (6,58 ”Hp(0) - 0

implies ¢(t)=0 , for all tel, and

b
(mn {Ia (flx _IOlglx)dt ) j:(sz _|02g2x)dt -

NG

invexity conditions of Theorem 3.1 are satisfied ,
then (x,(1).y, (1.1, A, ) is properly efficient for (MFP*)

- |Ok gkx)dt }is linearly independent. If The

In order to present a better view of the
concept of second order self-duality , we will
consider here problems (MFP) and (MFD) instead
of their equivalents (MFP*) and (MFD*) . Assume
that x(t) and y(t) have the same dimensions , i.e.m
= n the functions will said to be skew symmetric if

ftx, By, )=—f(ty,
and (t) are piece wise smooth , in the domain of f
and the function will be called symmetric if g(t,x,

)= a9ty

X, ) for all x and y with(t)

Y X, ) inthe domain of g .

Theorem 3.4 (Self-Duality)

If f(t,X, Y, ) is skew symmetric and

g(tx, ,y, ) is symmetric , then (MFP) and
(MFD) are self-dual . If (MFP) and (MFD) are dual
problems , then with (x,(t),y,(t).A, ,A, ) also (y (1),
X,(0),A, ,A, ) is a joint optimal solution and the
common optimal value is O .
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Proof

With f skew symmetric

fax, oy )==fty x )

fy(t, y: X, == fx(t,x, !y1 )

fox y )=-f @ty x )
t v x)==f (@tx .,y )

and g is symmetric , we have

gtx, .y, =gty .x )

gty % )=gtx Wy o)

g @tx, Yy )=g &y ,x )

g Gty x )=g tx Yy )

Expressing the dual problem (MFD) as a
minimization problem and making use of the above
relations , we have

), ) V). FD) S
u(t), &), v(t), &)

v )) i @ 0@1@’ mu@zmm«mmm RA W,
Pﬁ‘f?ﬁ% Tugel 60, v(0), B} RG, (u, V- {9, (b

-D gw&t U(t) m) V() 80 ) SF, (V)]

>0,
subject to
u(@) =0 =u(b), v(a) =0 = v(b).
®a) = 0=Hb), &a) = 0= &h)
<0,

JumT S AT (0000, 80) .0 0.0 YD, (0~ (1.0 ) ). )
—Dg“&(x U, ), v, EO B (V)]
H{ (600,00, 80) - D2, gltU(0. 80 V. B RG, (0v) ~{g

QHB‘(! u(t), 6, v(t), S0}, (u.v)]

tu(), @), v, &) >0

|uu(
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A>0,Ae = 1tel.

Which is just the primal problem (MFP).
Thus, if (x,(1).y,(1).l,, A, ) is an optimal solution of
(MFD), then (y,(1), X,(1), A, A,) is an optimal solution
of (MFD) .

0!

Since f is skew-symmetric and g is
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DISCUSSION

Particulars cases and remarks in applications

0] If we take the static case then this is the
recent work done in?.

(i) If we take the static case and the function f
to be real and differentiable with F-Convexity
and F =F,, then this is an earlier works.

symmetric , respectively , we have (i) If we first order case then this is work done
in3t,

(iv)  If we take the static case and the function f
I (t =—1 (t
ot Yo % Xor ) ol X Yo ) to be real and convex / concave then this is

— — an earlier work by Gulati and Ahmad3*.
lo; (&, X Yo ) =15 Y Xor ) ==t y
Xp Yy )
and so | (t, y,, B . LUR I S I
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