
INTRODUCTION

Dhage1,2,3  introduced the concept of
D-metric space and proved several results.
Rhoades4   also established interesting results on
D-metric spaces. Jungck5,6 introduced a more
general concept known as compatible mapping in
metr ic spaces. Ume7  proved non convex
minimization theorem in  D-metric spaces.

Definition 1
If ρ(X) is a collection of all non-empty

bounded subsets of a D-metric space (X,D) and for
A,B,C ∈ ρ(X), let  H(A,B,C) = sup {D(a,b,c) : a ∈ A,
b ∈ B, c ∈ C},then (1) H (A, B, C) ≥ 0 and H(A B,C)
= 0 implies A=B=C, with a singleton, further if
A=B=C, then H(A,B,C) =  perimeter of the largest
triangle contained in the set A > 0, otherwise A is
singleton,

(1) H(A,B,C) = H(B,C,A) = H(C,A,B) ,
(2) H(A,B,C) ≤ H(A,B,E) + H(A,E,C) +H(E,B,C)

Definition 2
A point xo ∈ X  is said to be fixed point if

Txo =xo i.e. a point which remain in variant under a
transformation T is called a fixed point.
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Coincidentally Commuting Mappings
The commutativity of pairs of maps is vital

for proving the common fixed point theorems and
Jungck5 first used it in the ordinary metric space.

Definition 3
Two maps f,g : X→X are said to be

commutative or commuting if fg(x) = gf(x) for all x ∈
X.
In an ordinary metric space (X,d), Sessa9 first
introduce a weaker version of the commutativity for
a pair of self maps of X as follows :

Definition 4
Two maps f,g:(X,d) → (X,d) are called

weakly commutative or weakly commuting if
d(fg(x), gf(x)) ≤ d(fx,gx) for all x ∈  X.

It is shown in research paper of Sessa8

that a weakly commuting pair of maps in metric
space is commuting, but the converse may not be
true. In the following we list a few weaker versions
of the commutativity for pairs of maps in metric
spaces appeared in the earlier literatures.

Definition 5
Jungck6, Two maps f,g:(X,d) → (X,d) are

said to be compatible if
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 lim
n→∞

 d(fgxn,gfxn) = 0,

whenever {xn} is a sequence in X satisfying
lim(fxn,gxn) = 0. It has been shown in Jungck9 that
every weakly commuting pair of maps is compatible,
but the reverse implication may not hold.

Definition 6
Two maps f,g : X→X are said to be

coincidentally commuting or coincidence preserving
if they commute at coincidence points.

Thus we have a one-way implication,
namely, commuting maps ⇒ weakly commuting
maps ⇒ compatible maps ⇒ coincidentally
commuting maps.

Example 1
Let X = R and define f,g : R→R by f(x)= x/

2  and g(x) = x2 for x ∈ R. Clearly there are two
coincidence points for the maps f and g in R namely
0 and ½. Note that f and g commute at 0, i.e. fg(0) =
gf(0), but fg (½)=1/8≠ gf(½)  and so f and g are not
coincidentally commuting on R.

Definition 7
Let S,T : X → X, then the orbit of S and T

at a point x ∈ X is a set  (3) O(S,T;x) = {x, Sx, TSx,
STSx, …}

Then the D-metric space X is said to be
(S,T)-orbitally bounded if the orbit O(S,T;x) is
bounded for each x ∈ X. The orbit O(S,T;x) is called
complete if every D-Cauchy sequence in O(S,T,x)
converges to a point in X. A (S,T)-orbitally complete
D-metric space X is one in which every orbit
O(S,T;x), x ∈ X, is complete.

Useful lemma in the sequel
Lemma 1. (D-Cauchy Principle)

Let {xn} ⊆ X be bounded with D-bound k
satisfying  (4) D(xn,xn+1,xm) ≤ ank for all m > n ∈ N
and 0 ≤ α ≤ 1, then {xn} is D-Cauchy.

Lemma 2 (D-Cauchy Principle)
Let {xn} ⊆ X be bounded with D-bound k

satisfying

(5) D(xn, xn+1, xm) ≤ φnk

for all m > n ∈ N, where φ:R+ → R+ satisfies

for each t ∈ R+. Then {xn} is D-Cauchy.

Lemma 3
If x is (X, T)-orbitally bounded D-metric

space and   {xn} ⊆ 0(S,T;x), x ∈ X satisfying

(6) D(xn, xn+1, xm) ≤ φn(t), for all m > n ∈ N,

where φ:R+ → R+ satisfies 

for each t ∈ R+. Then {xn} is D-Cauchy.

Let φ denotes the class of all functions
φ:R+ → R+ satisfying

(7) φ is continuous,
(8) φ is nondecreasing,
(9) φ (t) < t for t > 0,

(10) for each t ∈ R+

A member φ of class Φ is called a control
or contraction function and commonly used control
function is φ(t) = αt, 0 ≤ α < 1. We need the following
lemma in the sequel.

Lemma 4

If φ ∈ Φ, then  lim
n→∞

 φn (t) = 0 for each   t > 0

and φn (0) = 0 for each n ∈ N.

Below we prove the main result of this paper.

Theorem 1. Let S, T : X → X and let X be (S,T)-
orbitally complete and (S,T)-orbitally bounded D-
metric space and suppose that

for all x,y ∈ X and z ∈ O(S, T;x) ∪ O(T,
S;y), where 0 ≤ 2α+β  < 1 and φ ∈ Φ. Then S and T
have a unique common fixed point.
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Proof
Let x ∈ X be arbitrary and define a

sequence {xn} ⊂ X by
(12) x0=x, x2n+1= Sx2n, x2n+2 = Tx2n+1, n ≥ 0.

We show that {xn} is D-Cauchy. Now for
any m ≥ 2, by (11) we have

D(x1, x2, xm) = D(Sx0, Tx1, xm)
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≤ φ(α(D(x0, x1, xm)+D(x1,x2, xm)+βD(x0, x1, xm))
≤ α(D(x0, x1, xm)+ αD(x1, x2, xm) + βD(x0, x1, xm))

(13) D(x1, x2, xm) ≤ 
 α β

α
+
−1

 D(x0, x1, xm)

where k is a D-bound of O(S,T;x).

Similarly for m ≥ 3, we get

D(x2, x3, xm) = D(Sx2, Tx1, xm)

≤ φ[α(D(x2, x3, xm)+ D(x1, x2, xm) + βD(x1, x2, xm)]
≤ [αD(x2, x3, xm)+ αD(x1, x2, xm) + βD(x1, x2, xm)]
D(x2, x3, xm) ≤ (α + β/1-a)D(x1, x2, xm) ≤ (α + β/1-α)2

D(x0, x1, xm).

In general for m ≥ n + 1, one has

(14) D(xn, xn+1, xm)≤(α + β/1-a)n  D(x0, x1, xm)

which implies that {xn} is D-Cauchy, Since
X is (S, T) orbitally complete,

 xn = u exists. We show that u is a common

fixed point of S and T.

Now  D(u, Tu, u) =   D(x2n,Tu,u)

 =  D(Sx2n+1,Tu,u)

≤  

≤  φ(0 + αD(u, Tu, u) + 0) ≤ φ (αD(u, Tu, u))
            <αD(u, Tu, u)

(15)  (1-α) D(u, Tu, u) < 0,

which is possible only when u = Tu.
Again we get,

D(u, Su, u) = D(Su, u, u) = D(Su, Tu, u)

≤  φ[α D (u, Su, u)] ≤ α D (u, Su, u)

(16) and so u = Su since φ ∈ Φ.

Thus u is a common fixed point of S and T.
To prove uniqueness, let v(¹u) be another common
fixed point of S and T. Then D(u, u, v) ≠ 0 and we get
D(u, v, v) = D (Su, Tv, v)

≤ αD(u, u, v)

Again interchanging the role of u and v we
obtain  D(v, u, u) ≤ φ (D(v, v, u)).

It follows that   D(u, v, v) ≤ φ2 (D(u, v, v)).

Which is a contradiction and hence u = v.
This completes the proof.

≤ φ α + ______________________  βD(x1, x2, xm)]
                D(x2, x3, xm) + D(x1, x2, xm)

 (D(x2, x3, xm)² + D(x1, x2, xm)²
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