Fixed point theorems for the pair of coincidentally commuting mappings in d-metric space

DURDANA LATEEF* and A. BHATTACHARYA
Department of Mathematics, Jadavpur University, Kolkata- 700032 (India).
Email: siddiquepharma@gmail.com

(Received: July 18, 2010; Accepted: September 21, 2010)

Abstract

In this paper common fixed point of pair of coincidentally commuting mappings in D-metric spaces have been proved.

Key words: Common fixed point, D-metric spaces, coincidentally commuting mappings.

INTRODUCTION

Dhage ${ }^{1,2,3}$ introduced the concept of D-metric space and proved several results. Rhoades ${ }^{4}$ also established interesting results on D-metric spaces. Jungck ${ }^{5,6}$ introduced a more general concept known as compatible mapping in metric spaces. Ume ${ }^{7}$ proved non convex minimization theorem in D-metric spaces.

Definition 1

If $\rho(X)$ is a collection of all non-empty bounded subsets of a D-metric space (X, D) and for $A, B, C \in \rho(X)$, let $H(A, B, C)=\sup \{D(a, b, c): a \in A$, $b \in B, c \in C$, then (1) $H(A, B, C) \geq 0$ and $H(A B, C)$ $=0$ implies $A=B=C$, with a singleton, further if $A=B=C$, then $H(A, B, C)=$ perimeter of the largest triangle contained in the set $A>0$, otherwise A is singleton,
(1) $H(A, B, C)=H(B, C, A)=H(C, A, B)$,
(2) $H(A, B, C) \leq H(A, B, E)+H(A, E, C)+H(E, B, C)$

Definition 2

A point $x_{0} \in X$ is said to be fixed point if $T x_{0} x_{0}$ i.e. a point which remain in variant under a transformation T is called a fixed point.

Coincidentally Commuting Mappings

The commutativity of pairs of maps is vital for proving the common fixed point theorems and Jungck ${ }^{5}$ first used it in the ordinary metric space.

Definition 3

Two maps $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ are said to be commutative or commuting if $f(x)=g f(x)$ for all $x \in$ X.

In an ordinary metric space (X, d), Sessa ${ }^{9}$ first introduce a weaker version of the commutativity for a pair of self maps of X as follows :

Definition 4

Two maps $\mathrm{f}, \mathrm{g}:(\mathrm{X}, \mathrm{d}) \rightarrow(\mathrm{X}, \mathrm{d})$ are called weakly commutative or weakly commuting if $\mathrm{d}(\mathrm{fg}(\mathrm{x}), \mathrm{gf}(\mathrm{x})) \leq \mathrm{d}(\mathrm{fx}, \mathrm{gx})$ for all $\mathrm{x} \in \mathrm{X}$.

It is shown in research paper of Sessa ${ }^{8}$ that a weakly commuting pair of maps in metric space is commuting, but the converse may not be true. In the following we list a few weaker versions of the commutativity for pairs of maps in metric spaces appeared in the earlier literatures.

Definition 5

Jungck ${ }^{6}$, Two maps f,g:(X,d) \rightarrow (X,d) are said to be compatible if

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X satisfying $\lim \left(f x_{n}, g x_{n}\right)=0$. It has been shown in Jungck ${ }^{9}$ that every weakly commuting pair of maps is compatible, but the reverse implication may not hold.

Definition 6

Two maps $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ are said to be coincidentally commuting or coincidence preserving if they commute at coincidence points.

Thus we have a one-way implication, namely, commuting maps \Rightarrow weakly commuting maps \Rightarrow compatible maps \Rightarrow coincidentally commuting maps.

Example 1

Let $X=R$ and define $f, g: R \rightarrow R$ by $f(x)=x /$ 2 and $g(x)=x^{2}$ for $x \in R$. Clearly there are two coincidence points for the maps f and g in R namely 0 and $1 / 2$. Note that f and g commute at 0 , i.e. $f g(0)=$ $\operatorname{gf}(0)$, but $\mathrm{fg}(1 / 2)=1 / 8 \neq \mathrm{gf}(1 / 2)$ and so f and g are not coincidentally commuting on R.

Definition 7

Let $S, T: X \rightarrow X$, then the orbit of S and T at a point $x \in X$ is a set (3) $O(S, T ; x)=\{x, S x, T S x$, STSx, ...\}

Then the D-metric space X is said to be (S, T)-orbitally bounded if the orbit $O(S, T ; x)$ is bounded for each $x \in X$. The orbit $O(S, T ; x)$ is called complete if every D-Cauchy sequence in $\mathrm{O}(\mathrm{S}, \mathrm{T}, \mathrm{x})$ converges to a point in X . $\mathrm{A}(\mathrm{S}, \mathrm{T})$-orbitally complete D-metric space X is one in which every orbit $O(S, T ; x), x \in X$, is complete.

Useful lemma in the sequel

Lemma 1. (D-Cauchy Principle)

Let $\left\{x_{n}\right\} \subseteq X$ be bounded with D-bound k satisfying (4) $D\left(x_{n}, x_{n+1}, x_{m}\right) \leq a^{n} k$ for all $m>n \in N$ and $0 \leq \alpha \leq 1$, then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is D-Cauchy.

Lemma 2 (D-Cauchy Principle)

Let $\left\{x_{n}\right\} \subseteq X$ be bounded with D-bound k satisfying
(5) $D\left(x_{n}, x_{n+1}, x_{m}\right) \leq \phi^{n} k$
for all $m>n \in N$, where $\phi: R^{+} \rightarrow R^{+}$satisfies

$$
\sum_{n=1}^{\infty} \phi^{n}(t)<\infty
$$

for each $t \in R^{+}$. Then $\left\{x_{n}\right\}$ is D-Cauchy.

Lemma 3

If x is (X, T)-orbitally bounded D-metric space and $\left\{x_{n}\right\} \subseteq 0(S, T ; x), x \in X$ satisfying
(6) $D\left(x_{n}, x_{n+1}, x_{m}\right) \leq \phi^{n}(t)$, for all $m>n \in N$, where $\phi: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$satisfies $\sum_{n=1}^{\infty} \phi^{n}(t)<\infty$ for each $t \in R^{+}$. Then $\left\{x_{n}\right\}$ is D-Cauchy.

Let ϕ denotes the class of all functions
$\phi: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$satisfying
(7) ϕ is continuous,
(8) ϕ is nondecreasing,
(9) $\quad \phi(t)<t$ for $t>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \phi^{n}(t)<\infty \text { for each } \mathrm{t} \in \mathrm{R}^{+} \tag{10}
\end{equation*}
$$

A member ϕ of class Φ is called a control or contraction function and commonly used control function is $\phi(t)=\alpha t, 0 \leq \alpha<1$. We need the following lemma in the sequel.

Lemma 4

$$
\text { If } \phi \in \Phi \text {, then } \lim _{n \rightarrow \infty} \phi^{n}(t)=0 \text { for each } t>0
$$

and $\phi^{n}(0)=0$ for each $n \in N$.
Below we prove the main result of this paper.
Theorem 1. Let $S, T: X \rightarrow X$ and let X be (S, T)orbitally complete and (S,T)-orbitally bounded Dmetric space and suppose that
$D(S x, T y, z) \leq \phi a \frac{D(x, S x, z)^{2}+D(y, T y, z)^{2}}{D(x, S x, z)+D(y, T y, z)}+\beta(x, y, z)$
for all $x, y \in X$ and $z \in O(S, T ; x) \cup O(T$, $S ; y$), where $0 \leq 2 \alpha+\beta<1$ and $\phi \in \Phi$. Then S and T have a unique common fixed point.

Proof

Let $x \in X$ be arbitrary and define a sequence $\left\{x_{n}\right\} \subset X$ by (12) $x_{0}=x, x_{2 n+1}=S x_{2 n}, x_{2 n+2}=T x_{2 n+1}, n \geq 0$.

We show that $\left\{x_{n}\right\}$ is D-Cauchy. Now for any $m \geq 2$, by (11) we have
$D\left(x_{1}, x_{2}, x_{m}\right)=D\left(S x_{0}, T x_{1}, x_{m}\right)$
$\leq \phi \quad \alpha \frac{D\left(x_{0}, x_{1}, x_{m}\right)^{2}+D\left(x_{1}, x_{2}, x_{m}\right)^{2}}{D\left(x_{0}, x_{1}, x_{m}\right)+D\left(x_{1}, x_{2}, x_{m}\right)}+\beta D\left(x_{0}, x_{1}, x_{m}\right)$
$\leq \phi\left(\alpha\left(D\left(x_{0}, x_{1}, x_{m}\right)+D\left(x_{1}, x_{2}, x_{m}\right)+\beta D\left(x_{0}, x_{1}, x_{m}\right)\right)\right.$
$\leq \alpha\left(D\left(x_{0}, x_{1}, x_{m}\right)+\alpha D\left(x_{1}, x_{2}, x_{m}\right)+\beta D\left(x_{0}, x_{1}, x_{m}\right)\right)$

$$
\begin{equation*}
\mathrm{D}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{\mathrm{m}}\right) \leq \frac{\alpha+\beta}{1-\alpha} \mathrm{D}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{\mathrm{m}}\right) \tag{13}
\end{equation*}
$$

where k is a D-bound of $O(S, T ; x)$.
Similarly for $m \geq 3$, we get
$D\left(x_{2}, x_{3}, x_{m}\right)=D\left(S x_{2}, T x_{1}, x_{m}\right)$
$\left.\leq \phi \alpha+\frac{\left(D\left(x_{2}, x_{3}, x_{m}\right)^{2}+D\left(x_{1}, x_{2}, x_{m}\right)^{2}\right.}{D\left(x_{2}, x_{3}, x_{m}\right)+D\left(x_{1}, x_{2}, x_{m}\right)} \beta D\left(x_{1}, x_{2}, x_{m}\right)\right]$ $\leq \phi\left[\alpha\left(D\left(x_{2}, x_{3}, x_{m}\right)+D\left(x_{1}, x_{2}, x_{m}\right)+\beta D\left(x_{1}, x_{2}, x_{m}\right)\right]\right.$ $\leq\left[\alpha D\left(x_{2}, x_{3}, x_{m}\right)+\alpha D\left(x_{1}, x_{2}, x_{m}\right)+\beta D\left(x_{1}, x_{2}, x_{m}\right)\right]$ $D\left(x_{2}, x_{3}, x_{m}\right) \leq(\alpha+\beta / 1-a) D\left(x_{1}, x_{2}, x_{m}\right) \leq(\alpha+\beta / 1-\alpha)^{2}$ $D\left(x_{0}, x_{1}, x_{m}\right)$.

In general for $\mathrm{m} \geq \mathrm{n}+1$, one has

$$
\begin{equation*}
D\left(x_{n}, x_{n+1}, x_{m}\right) \leq(\alpha+\beta / 1-a)^{n} D\left(x_{0}, x_{1}, x_{m}\right) \tag{14}
\end{equation*}
$$

which implies that $\left\{x_{n}\right\}$ is D-Cauchy, Since X is (S, T) orbitally complete,
$\lim _{n \rightarrow \infty} x_{n}=u$ exists. We show that u is a common fixed point of S and T.

Now $D(u, T u, u)=\lim _{n \rightarrow \infty} D\left(x_{2 n}, T u, u\right)$

$$
=\lim _{n \rightarrow \infty} \mathrm{D}\left(\mathrm{Sx}_{2 n+1}, \mathrm{Tu}, \mathrm{u}\right)
$$

$\leq \lim _{n \rightarrow \infty} \phi a \frac{D\left(x_{i, i}, S x_{2 n} u\right)^{2}+D(u, \bar{T}, u)^{2}}{D\left(x_{2 n}, S x_{u, u} u\right)+D(u, T u, u)}+\boldsymbol{A}\left(x_{x i}, u, u\right)$
$\leq \phi(0+\alpha \mathrm{D}(\mathrm{u}, \mathrm{Tu}, \mathrm{u})+0) \leq \phi(\alpha \mathrm{D}(\mathrm{u}, \mathrm{Tu}, \mathrm{u}))$ $<\alpha \mathrm{D}(\mathrm{u}, \mathrm{Tu}, \mathrm{u})$
(15) $(1-\alpha) \mathrm{D}(\mathrm{u}, \mathrm{Tu}, \mathrm{u})<0$,
which is possible only when $u=T u$.
Again we get,
$D(u, S u, u)=D(S u, u, u)=D(S u, T u, u)$

$$
\leq \phi \alpha \frac{D(u, S u, u)^{2}+D(u, u, u)^{2}}{D(u, S u u, u)+D(u, u, u)}+\beta(u, u, u)
$$

$\leq \phi[\alpha \mathrm{D}(\mathrm{u}, \mathrm{Su}, \mathrm{u})] \leq \alpha \mathrm{D}(\mathrm{u}, \mathrm{Su}, \mathrm{u})$
(16) and so $u=$ Su since $\phi \in \Phi$.

Thus u is a common fixed point of S and T. To prove uniqueness, let $v\left({ }^{1} u\right)$ be another common fixed point of S and T. Then $D(u, u, v) \neq 0$ and we get $D(u, v, v)=D(S u, T v, v)$
$\leq \phi \alpha \frac{D(u, S u, v)^{2}+D(v, T v, v)^{2}}{D(u, S u, v)+D(v, T v, v)^{2}}+\beta D(u, v, v)$
$\leq \alpha \mathrm{D}(\mathrm{u}, \mathrm{u}, \mathrm{v})$
Again interchanging the role of u and v we obtain $\mathrm{D}(\mathrm{v}, \mathrm{u}, \mathrm{u}) \leq \phi(\mathrm{D}(\mathrm{v}, \mathrm{v}, \mathrm{u}))$.

It follows that $D(u, v, v) \leq \phi^{2}(D(u, v, v))$.
Which is a contradiction and hence $u=v$. This completes the proof.

REFERENCES

1. Dhage, B.C., "Generalized metric spaces and mappings with fixed points" Bull. Cal. Math. Soc. 84: 329-336 (1992).
2. Dhage, B.C., "Continuity of maps in D-metric spaces, Bull. Cal. Math.Soc., 86: 503-508 (1994).
3. Dhage, B.C., "Common fixed points of pairs of coincidentally commuting s in D-metric spaces" Ind. J. pure Appl. Math. 30: 395-406 (1999).
4. Rhoades, B.E., "A fixed point theorem for generalized metric space" Int. J. Math. and Math. Sci. 19: 457-460 (1996).
5. Jungck, G., "Commuting mappings and common fixed points", Am. Math. Monthly.

83: 261-263 (1976).
6. Jungck, G.,"Compatible mappings and common fixed point (2)" Int.J. Math. and Math. Sci. 9: 285-288 (1988).
7. Ume,J.S.,Remarks on non-convex minimization theorems and fixed point theorems in complete D- metric spaces, Indian J. Pure. Appl. Math., 32: 25-36 (2001).
8. Seesas, S., Rhoades, B.E. and Khan, M.S., "On Common fixed points of compatible maps in metric and Banach spaces" Int. J. Math. and Math. Sci. 11: 375-392 (1988).
9. Jungck, G., "Compatible maps and common fixed points" Int. J. Math. and Math. Sci. 4: 771-779 (1986).

